JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

芳香族氨基酸调控细胞代谢的生物正交化学成像

Published: May 12th, 2023

DOI:

10.3791/65121

1Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
* These authors contributed equally

我们提出了一种协议,使用氧化氘(重水D2O)探测的受激拉曼散射(DO-SRS)显微镜直接可视化由氨基酸调节的细胞中的代谢活动,该显微镜与双光子激发荧光显微镜(2PEF)集成。

必需芳香族氨基酸(AAA)是在细胞中合成新生物质和维持正常生物功能的基石。例如,充足的AAAs供应对于癌细胞维持其快速生长和分裂很重要。因此,对高度特异性、无创成像方法的需求不断增长,该方法具有最少的样品制备,以直接可视化细胞如何利用 AAA 进行 原位代谢。在这里,我们开发了一种光学成像平台,该平台将氧化氘(D2O)探测与受激拉曼散射(DO-SRS)相结合,并将DO-SRS与双光子激发荧光(2PEF)集成到单个显微镜中,以直接可视化AAA调节下HeLa细胞的代谢活动。总的来说,DO-SRS平台为单个HeLa细胞单元中新合成的蛋白质和脂质提供了高空间分辨率和特异性。此外,2PEF模式可以无标记方式检测烟酰胺腺嘌呤二核苷酸(NADH)和黄素的自发荧光信号。这里描述的成像系统与 体外 体内 模型兼容,对于各种实验都是灵活的。该协议的一般工作流程包括细胞培养、培养基制备、细胞同步、细胞固定以及使用 DO-SRS 和 2PEF 模式进行样品成像。

苯丙氨酸(Phe)和色氨酸(Tryp)是必需的芳香族氨基酸(AAA),可以被人体吸收,合成维持正常生物学功能的新分子1。Phe是合成蛋白质,黑色素和酪氨酸所必需的,而Tryp是合成褪黑激素,血清素和烟酸2,3所必需的。然而,过量食用这些AAA可以上调雷帕霉素(mTOR)途径的哺乳动物靶标,抑制AMP活化的蛋白激酶,并干扰线粒体代谢,共同改变大分子生物合成并导致恶性前体的产生,例如健康细胞中的活性氧(ROS)4,5,6.在过量的AAA调节下直接可视化改变的代谢动力学对于了解AAA在促进癌症发展和健康细胞生长中的作用至关重要7,8,9

传统的AAA研究依赖于气相色谱(GC)10。其他方法,如磁共振成像(MRI),空间分辨率有限,因此难以对生物样品进行细胞和亚细胞分析

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. 培养基制备

  1. 在含有 50% D2O 的 Dulbecco 改良鹰培养基 (DMEM) 中制备 10 mL 对照和过量 AAA。
    1. 对于对照介质,在 15 mL 锥形管中测量 10 mg DMEM 粉末与 4.7 mL 双蒸水 (ddH2O) 并混合。DMEM粉末含有标准浓度的所有氨基酸。彻底涡旋并倒置管,以确保溶液充分混合。加入 4.7 mL D2O、0.5 mL 胎牛血清 (5% FBS) 和 0.1 mL 青霉素/链霉素 (1%)。彻底涡旋并倒置管,.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

将浓度为 15x 的过量 AAA 添加到含 50% D2O 的细胞培养基中,在 HeLa 细胞中产生了新合成的脂质和蛋白质的不同 C-D 拉曼带(图 2B)。以前的实验是用不同的浓度水平进行的,例如2x和5x,虽然没有提供数据,但15x浓度产生了新合成的脂质和蛋白质的最明显的C-D拉曼带。具体来说,通过研究脂滴(LDs),我们注意到15x Phe和15x Tryp分别在2,143 cm-1和2,172 cm-1处诱导新合.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

DO-SRS和2PEF成像已被应用于研究各种离体模型中的代谢动力学,包括果蝇和人体组织21,22,23,24,26,27,33。本研究中使用的成像方式集成了DO-SRS和2PEF显微镜,无需使用细胞毒性试剂进行分子提取或标记,并且需要最少的样.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

我们感谢李亚娟博士和冯安东尼博士的技术支持,以及Fraley实验室的细胞系。我们感谢UCSD,NIH U54CA132378,NIH 5R01NS111039,NIH R21NS125395,NIHU54DK134301,NIHU54 HL165443和Hellman Fellow奖的启动资金。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
10 mL Serological Pipettes Avantor (by VWR)75816-100https://us.vwr.com/store/product?keyword=75816-100
15 mL Conical Centrifuge TubeVWR89039-664https://mms.mckesson.com/product/1001859/VWR-International-89039-664
16% Formaldehyde, Methanol-freeThermoFisher Scientific28906https://www.thermofisher.com/order/catalog/product/28906
24-well plateFisherbrandFB0112929https://www.fishersci.com/shop/products/24-well-tc-multidish-100-cs/FB012929#?keyword=FB012929
25 mm Syringe Filter, 2 μm PESFoxx Life Sciences381-2216-OEMhttps://www.foxxlifesciences.com/collections/pes-syringe-filters/products/381-2216-oem?variant=16274336003
460 nm Filter CubeOlympusOCT-ET460/50M32
AC Adapters of the Power Supply for LD OBIS 6 Laser RemoteOlympusSupply power to the laser
Band-pass FilterKR ElectronicsKR27248 MHz
BNC 50 Ohm Terminator Mini CircuitsSTRM-50
BNC CableThorlabs2249-CCoaxial Cable, BNC Male/Male
Broadband Dielectric MirrorThorlabsBB1-E03750 - 1100 nm
Centrifuge
CondenserOlympus
Cover GlassCorning2850-25https://ecatalog.corning.com/life-sciences/b2b/NL/en/Glassware/Cover-Glass/Corning%C2%AE-Square-%231%C2%BD-Cover-Glass/p/2850-25
DC power supplyTopWard6302D
Dichroic MountThorlabsKM100CL
Dimethyl Sulfoxide Cell Culture Reagentmpbio 196055https://www.mpbio.com/0219605525-dimethyl-sulfoxide-cf
Dulbecco's Modified Eagle’s Medium without Methionine, Threonine, and Sodium PyruvateMilliporeSigma38210000https://www.usbio.net/media/D9800-22/dulbeccorsquos-mem-dmem-wsodium-bicarbonate-wo-methionine-threonine-sodium-pyruvate-powder
With Sodium Bicarbonate and without Methionine, Threonine, and Sodium Pyruvate 
Dulbecco’s Modified Eagle’s MediumCorningMT10027CVhttps://www.fishersci.com/shop/products/dmem-dulbecco-s-modified-eagle-s-medium-4/MT10027CV#:~:text=Dulbecco's%20Modified%20Eagle's%20Medium%20
FIJI ImageJImageJVersion 1.53t 24 August 2022https://imagej.net/software/fiji/downloads
Heavy Water (Deuterium Oxide)Cambridge Isotope Laboratories, Inc.7732-18-5https://shop.isotope.com/productdetails.aspx?itemno=DLM-4-1L
Hela CellsATCCCCL-2https://www.atcc.org/products/ccl-2
HemocymeterMilliporeSigmaZ359629-1EAhttps://www.sigmaaldrich.com/US/en/product/sigma/z359629?gclid=Cj0KCQiA37KbBhDgARIsAI
zce15A5FIy0WS7I6ec2KVk
QPXVMEqlAnYis_bKB6P6lr
SIZ-wAXOyAELIaAhhEEAL
w_wcB&gclsrc=aw.ds
High O.D. Bandpass FilterChroma TechnologyET890/220mFilter the Stokes beam and transmit the pump beam
HyClone Fetal Bovine Serum (FBS)Cytiva SH300880340https://www.fishersci.com/shop/products/hyclone-fetal-bovine-serum-u-s-standard-4/SH300880340
HyClone Trypsin 0.25% (1x) SolutionCytivaSH30042.02https://www.cytivalifesciences.com/en/us/shop/cell-culture-and-fermentation/reagents-and-supplements/cell-disassociation-reagents/hyclone-trypsin-protease-p-00445
Integrated SRS Laser SystemApplied Physics & Electronics, Inc.picoEMERALDpicoEMERALD provides an output pulse at 1031 nm with 6-ps pulse width and 80-MHz repetition rate, which serves as the Stokes beam.  The frequency doubled beam at 532 nm is used to synchronously seed a picosecond optical parametric oscillator (OPO) to produce a mode-locked pulse train with five~6 ps pulse width (the idler beam of the OPO is blocked with an,interferometric filter). The output wavelength of the OPO is tunable from 720–950 nm, which serves as the pump beam. The intensity of the 1031 nm Stokes beam is modulated sinusoidally by a built-in EOM at 8 MHz with a modulation depth of more than 90%. The pump beam is spatially overlapped with the Stokes beam by using a dichroic mirror inside picoEMERALD. The temporal overlap between pump and Stokes pulses are achieved with a built-in delay stage and optimized by the SRS signal of pure D2O at the microscope.
Inverted Laser-scanning MicroscopeOlympusFV1200MPE
IX3-CBH Control boxOlympusControl the laser-scanning microscope
Kinematic Mirror MountThorlabsPOLARIS-K1-2AH2 Low-Profile Hex Adjusters
L-PhenalynineSigmaP5482-25Ghttps://www.sigmaaldrich.com/US/en/product/sigma/p5482
L-TryptophanSigmaT8941-25Ghttps://www.sigmaaldrich.com/US/en/product/sigma/t8941
LabSpec 6Horiba XploRAN/Ahttps://www.horiba.com/gbr/scientific/products/detail/action/show/Product/labspec-6-spectroscopy-suite-software-1843/
Lock-In AmplifierZurich InstrumentsN/Ahttps://www.zhinst.com/americas/en/products/shfli-lock-in-amplifier
Long-pass Dichroic Beam SplitterSemrockDi02-R980-25x36980 nm laser BrightLine single-edge laser-flat dichroic beamsplitter
MATLABMathWorksVersion: R2022bhttps://www.mathworks.com/products/new_products/latest_features.html
Microscope SlidesFisherbrand12-550-003https://www.fishersci.com/shop/products/fisherbrand-selectfrost-microscope-slides-9/12550003#?keyword=12-550-003
Microscopy Imaging SoftwareOlympusFluoView
MPLN 100x, OlympusOlympusMPLAPONhttps://www.olympus-ims.com/en/microscope/mplapon/#!cms[focus]=cmsContent11364
MPLN 50x, OlympusOlympusMPLAPON https://www.olympus-ims.com/en/microscope/mplapon/#!cms[focus]=cmsContent11363
NA Oil CondenserOlympus 6-U130https://www.hitechinstruments.com/Product-Details/olympus-achromatic-aplanatic-high-na-condneser
Nail PolishWet n WildB01EO2G5O4https://www.amazon.com/dp/B01EO2G5O4/ref=cm_sw_r_api_i_E609VVDWW
HHQP38FXXDC_0
OriginOriginLabOrigin 2022b (9.95)https://www.originlab.com/index.aspx?go=PRODUCTS/Origin
ParafilmFisher ScientificS37440https://www.fishersci.com/shop/products/parafilm-m-wrapping-film-3/p-2379782
PBS 1x (Dulbecco's Phosphate Buffered Saline)Thermofischer - Gibco14040117https://www.thermofisher.com/order/catalog/product/14040117?SID=srch-hj-14040117
Penicillin/StreptomycinThermofischer - Gibco15140122https://www.thermofisher.com/order/catalog/product/15140122
Periscope AssemblyThorlabsRS99Includes the top and bottom units, Ø1" post, and clamping fork.
picoEmerald SystemA.P.EN/Ahttps://www.ape-berlin.de/en/cars-srs/
Shielded Box with BNC ConnectorsPomona Electronics2902Aluminum Box with Cover, BNC Female/Female
Si Photodiode DetectorHome BuiltN/ADYI series
Silicon Wafer
SpacersGrace Bio-Labs654008https://gracebio.com/product/secureseal-imaging-spacers-654008/
Spontaneous Raman spectroscopyHoriba XploRAN/Ahttps://www.horiba.com/int/products/detail/action/show/Product/xploratm-plus-1528/
Stimulated Raman Scattering MicroscopyHome BuiltN/A
Touch  Panel ControllerOlympusControl the X-Y direction of the laser-scanning microscope
Trypan Blue 0.4% (0.85% NaCl) Lonza17-942Ehttps://bioscience.lonza.com/lonza_bs/US/en/Culture-Media-and-Reagents/p/000000000000181876/Trypan-Blue%2C-0-4%25-Solution"
TweezersKaverme - AmazonB07RNVXXV1https://www.amazon.com/Precision-Anti-Static-Electronics-Laboratory-Jewelry-Making/dp/B07RNVXXV1"
Two Photon Excitation Fluorescence MicroscopyHome BuiltN/A
Weighing Paper VWR12578-165https://us.vwr.com/store/product/4597617/vwr-weighing-paper
Zurich LabOneQ SoftwareZurich InstrumentsControl the Zurich lock-in amplifier

  1. Wu, G. Functional amino acids in nutrition and health. Amino Acids. 45 (3), 407-411 (2013).
  2. Wei, Z., Liu, X., Cheng, C., Yu, W., Yi, P. Metabolism of amino acids in cancer. Frontiers in Cell and Developmental Biology. 8, 603837 (2020).
  3. Parthasarathy, A., et al. A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Frontiers in Molecular Biosciences. 5, 29 (2018).
  4. Wang, H., et al. l-tryptophan activates mammalian target of rapamycin and enhances expression of tight junction proteins in intestinal porcine epithelial cells. The Journal of Nutrition. 145 (6), 1156-1162 (2015).
  5. Saxton, R. A., Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell. 168 (6), 960-976 (2017).
  6. Mossmann, D., Park, S., Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nature Reviews. Cancer. 18 (12), 744-757 (2018).
  7. Kimura, T., Watanabe, Y. Tryptophan protects hepatocytes against reactive oxygen species-dependent cell death via multiple pathways including Nrf2-dependent gene induction. Amino Acids. 48 (5), 1263-1274 (2016).
  8. Ma, Q., et al. Dietary supplementation with aromatic amino acids decreased triglycerides and alleviated hepatic steatosis by stimulating bile acid synthesis in mice. Food and Function. 12 (1), 267-277 (2021).
  9. Cheng, C., et al. Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer. International Journal of Biological Sciences. 15 (8), 1654-1663 (2019).
  10. Lubes, G., Goodarzi, M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. Journal of Pharmaceutical and Biomedical Analysis. 147, 313-322 (2018).
  11. Di Gialleonardo, V., Wilson, D. M., Keshari, K. R. The potential of metabolic imaging. Seminars in Nuclear Medicine. 46 (1), 28-39 (2016).
  12. Bowman, A. P., et al. Evaluation of lipid coverage and high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation. Analytical and Bioanalytical Chemistry. 412 (10), 2277-2289 (2020).
  13. Murphy, R. C., Hankin, J. A., Barkley, R. M. Imaging of lipid species by MALDI mass spectrometry. Journal of Lipid Research. 50, 317-322 (2009).
  14. Pirman, D. A., et al. Changes in cancer cell metabolism revealed by direct sample analysis with MALDI mass spectrometry. PLoS One. 8 (4), e61379 (2013).
  15. Li, Z., et al. Single-cell lipidomics with high structural specificity by mass spectrometry. Nature Communications. 12 (1), 2869 (2021).
  16. Miyagi, M., Kasumov, T. Monitoring the synthesis of biomolecules using mass spectrometry. Philosophical Transactions. Series A, Mathematical, Physical and Engineering Sciences. 374 (2079), 20150378 (2016).
  17. Wang, T., Shogomori, H., Hara, M., Yamada, T., Kobayashi, T. Nanomechanical recognition of sphingomyelin-rich membrane domains by atomic force microscopy. Biochemistry. 51 (1), 74-82 (2012).
  18. Fung, A. A., Shi, L. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. 12 (6), e1501 (2020).
  19. Shi, L., Fung, A. A., Zhou, A. Advances in stimulated Raman scattering imaging for tissues and animals. Quantitative Imaging in Medicine and Surgery. 11 (3), 1078-1101 (2021).
  20. Yamakoshi, H., et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. Journal of the American Chemical Society. 133 (16), 6102-6105 (2011).
  21. Shi, L., et al. Optical imaging of metabolic dynamics in animals. Nature Communications. 9 (1), 2995 (2018).
  22. Bagheri, P., Hoang, K., Fung, A. A., Hussain, S., Shi, L. Visualizing cancer cell metabolic dynamics regulated with aromatic amino acids using DO-SRS and 2PEF microscopy. Frontiers in Molecular Biosciences. 8, 779702 (2021).
  23. Li, Y., et al. Direct imaging of lipid metabolic changes in drosophila ovary during aging using DO-SRS microscopy. Frontiers in Aging. 2, 819903 (2022).
  24. Li, Y., Zhang, W., Fung, A. A., Shi, L. DO-SRS imaging of metabolic dynamics in aging Drosophila. Analyst. 146 (24), 7510-7519 (2021).
  25. Zhang, L., et al. Spectral tracing of deuterium for imaging glucose metabolism. Nature Biomedical Engineering. 3 (5), 402-413 (2019).
  26. Fung, A. A., et al. Imaging sub-cellular methionine and insulin interplay in triple negative breast cancer lipid droplet metabolism. Frontiers in Oncology. 12, 858017 (2022).
  27. Li, Y., Zhang, W., Fung, A. A., Shi, L. DO-SRS imaging of diet regulated metabolic activities in Drosophila during aging processes. Aging Cell. 21 (4), e13586 (2022).
  28. Shi, L., Wei, M., Min, W. Highly-multiplexed tissue imaging with raman dyes. Journal of Visualized Experiments. (182), e63547 (2022).
  29. Rysman, E., et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Research. 70 (20), 8117-8126 (2010).
  30. Lisec, J., Jaeger, C., Rashid, R., Munir, R., Zaidi, N. Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia. BMC Cancer. 19 (1), 501 (2019).
  31. Thiam, A. R., Dugail, I. Lipid droplet-membrane contact sites - from protein binding to function. Journal of Cell Science. 132 (12), (2019).
  32. Schott, M. B., et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. The Journal of Cell Biology. 218 (10), 3320-3335 (2019).
  33. Hoang, K., et al. Subcellular resolution DO-SRS and 2PEF imaging of metabolic dynamics regulated by L-methionine in amyotrophic lateral sclerosis. Optical Biopsy XXI: Toward Real-Time Spectroscopic Imaging and Diagnosis. SPIE. 1237303, 6-13 (2023).
  34. Jang, H., et al. Super-resolution stimulated Raman scattering microscopy with A-PoD. bioRxiv. , (2022).
  35. Li, Y., et al. Optical metabolic imaging uncovers sex- and diet-dependent lipid changes in aging drosophila brain. bioRxiv. , (2022).
  36. Zhang, W., et al. Multi-molecular hyperspectral PRM-SRS imaging. bioRxiv. , (2022).
  37. Wei, M., et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences. 116 (14), 6608-6617 (2019).
  38. Chang, T., et al. Non-invasive monitoring of cell metabolism and lipid production in 3D engineered human adipose tissues using label-free multiphoton microscopy. Biomaterials. 34 (34), 8607-8616 (2013).
  39. Leica TCS SP8 CARS CARS Microscope - Label Free Imaging. Leica Microsystems Available from: https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8-cars/downloads/ (2023)

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved