JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Bioortogonal kemisk billeddannelse af cellemetabolisme reguleret af aromatiske aminosyrer

Published: May 12th, 2023

DOI:

10.3791/65121

1Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
* These authors contributed equally

Vi præsenterer en protokol til direkte visualisering af metaboliske aktiviteter i celler reguleret af aminosyrer ved hjælp af deuteriumoxid (tungt vand D2O) sondet stimuleret Raman-spredning (DO-SRS) mikroskopi, som er integreret med to-foton excitation fluorescens mikroskopi (2PEF).

Essentielle aromatiske aminosyrer (AAA'er) er byggesten til syntetisering af nye biomasser i celler og opretholdelse af normale biologiske funktioner. For eksempel er en rigelig forsyning af AAA'er vigtig for kræftceller for at opretholde deres hurtige vækst og deling. Med dette er der en stigende efterspørgsel efter en meget specifik, ikke-invasiv billeddannelsesmetode med minimal prøveforberedelse til direkte visualisering af, hvordan celler udnytter AAA'er til deres stofskifte in situ. Her udvikler vi en optisk billeddannelsesplatform, der kombinerer deuteriumoxid (D2O) sondering med stimuleret Raman-spredning (DO-SRS) og integrerer DO-SRS med to-foton excitationsfluorescens (2PEF) i et enkelt mikroskop for direkte at visualisere HeLa-cellernes metaboliske aktiviteter under AAA-regulering. Samlet set giver DO-SRS-platformen høj rumlig opløsning og specificitet af nyligt syntetiserede proteiner og lipider i enkelte HeLa-celleenheder. Derudover kan 2PEF-modaliteten detektere autofluorescenssignaler af nicotinamid-adenin-dinukleotid (NADH) og Flavin på en etiketfri måde. Det billeddannelsessystem, der beskrives her, er kompatibelt med både in vitro- og in vivo-modeller , som er fleksibelt til forskellige forsøg. Den generelle arbejdsgang i denne protokol inkluderer cellekultur, tilberedning af kulturmedier, cellesynkronisering, cellefiksering og prøvebilleddannelse med DO-SRS- og 2PEF-modaliteter.

At være essentielle aromatiske aminosyrer (AAA'er), phenylalanin (Phe) og tryptophan (Tryp) kan absorberes af menneskekroppen for at syntetisere nye molekyler til opretholdelse af normale biologiske funktioner1. Phe er nødvendig til syntese af proteiner, melanin og tyrosin, mens Tryp er nødvendig til syntese af melatonin, serotonin og niacin 2,3. Imidlertid kan overskydende forbrug af disse AAA'er opregulere pattedyrets mål for rapamycin (mTOR) -vejen, hæmme AMP-aktiveret proteinkinase og forstyrre mitokondriemetabolismen, kollektivt ændre makromolekylebiosyntese og føre til produktion ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Forberedelse af medier

  1. Forbered 10 ml kontrol og overskydende AAA'er i Dulbeccos modificerede Eagle-medium (DMEM) indeholdende 50% D2O.
    1. Til kontrolmediet måles og blandes 10 mg DMEM-pulver med 4,7 ml dobbeltdestilleret vand (ddH2O) i et 15 ml konisk rør. DMEM-pulveret indeholder alle aminosyrerne i standardkoncentrationer. Grundigt hvirvel og vend røret for at sikre, at opløsningen er godt blandet. Tilsæt 4,7 ml D2O, 0,5 ml føtalt bovint serum (5.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tilsætningen af overskydende AAA'er ved 15x koncentrationer til de 50% D2O-holdige cellekulturmedier producerede forskellige C-D Raman-bånd af nyligt syntetiserede lipider og proteiner i HeLa-celler (figur 2B). Tidligere eksperimenter blev udført med forskellige koncentrationsniveauer, såsom 2x og 5x, og selvom dataene ikke præsenteres, producerede 15x-koncentrationen de mest tydelige C-D Raman-bånd af nyligt syntetiserede lipider og proteiner. Specifikt ved at undersøge li.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

DO-SRS og 2PEF billeddannelse er blevet anvendt til at undersøge metabolisk dynamik i forskellige ex vivo modeller, herunder Drosophila og humane væv 21,22,23,24,26,27,33. Den billeddannelsesmodalitet, der anvendes i denne undersøgelse, integrerer DO-SRS og 2PEF-mikroskopi, som k.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Vi takker Dr. Yajuan Li og Anthony Fung for deres tekniske support og Fraley-laboratoriet for cellelinjen. Vi anerkender opstartsmidlerne fra UCSD, NIH U54CA132378, NIH 5R01NS111039, NIH R21NS125395, NIHU54DK134301, NIHU54 HL165443 og Hellman Fellow Award.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
10 mL Serological Pipettes Avantor (by VWR)75816-100https://us.vwr.com/store/product?keyword=75816-100
15 mL Conical Centrifuge TubeVWR89039-664https://mms.mckesson.com/product/1001859/VWR-International-89039-664
16% Formaldehyde, Methanol-freeThermoFisher Scientific28906https://www.thermofisher.com/order/catalog/product/28906
24-well plateFisherbrandFB0112929https://www.fishersci.com/shop/products/24-well-tc-multidish-100-cs/FB012929#?keyword=FB012929
25 mm Syringe Filter, 2 μm PESFoxx Life Sciences381-2216-OEMhttps://www.foxxlifesciences.com/collections/pes-syringe-filters/products/381-2216-oem?variant=16274336003
460 nm Filter CubeOlympusOCT-ET460/50M32
AC Adapters of the Power Supply for LD OBIS 6 Laser RemoteOlympusSupply power to the laser
Band-pass FilterKR ElectronicsKR27248 MHz
BNC 50 Ohm Terminator Mini CircuitsSTRM-50
BNC CableThorlabs2249-CCoaxial Cable, BNC Male/Male
Broadband Dielectric MirrorThorlabsBB1-E03750 - 1100 nm
Centrifuge
CondenserOlympus
Cover GlassCorning2850-25https://ecatalog.corning.com/life-sciences/b2b/NL/en/Glassware/Cover-Glass/Corning%C2%AE-Square-%231%C2%BD-Cover-Glass/p/2850-25
DC power supplyTopWard6302D
Dichroic MountThorlabsKM100CL
Dimethyl Sulfoxide Cell Culture Reagentmpbio 196055https://www.mpbio.com/0219605525-dimethyl-sulfoxide-cf
Dulbecco's Modified Eagle’s Medium without Methionine, Threonine, and Sodium PyruvateMilliporeSigma38210000https://www.usbio.net/media/D9800-22/dulbeccorsquos-mem-dmem-wsodium-bicarbonate-wo-methionine-threonine-sodium-pyruvate-powder
With Sodium Bicarbonate and without Methionine, Threonine, and Sodium Pyruvate 
Dulbecco’s Modified Eagle’s MediumCorningMT10027CVhttps://www.fishersci.com/shop/products/dmem-dulbecco-s-modified-eagle-s-medium-4/MT10027CV#:~:text=Dulbecco's%20Modified%20Eagle's%20Medium%20
FIJI ImageJImageJVersion 1.53t 24 August 2022https://imagej.net/software/fiji/downloads
Heavy Water (Deuterium Oxide)Cambridge Isotope Laboratories, Inc.7732-18-5https://shop.isotope.com/productdetails.aspx?itemno=DLM-4-1L
Hela CellsATCCCCL-2https://www.atcc.org/products/ccl-2
HemocymeterMilliporeSigmaZ359629-1EAhttps://www.sigmaaldrich.com/US/en/product/sigma/z359629?gclid=Cj0KCQiA37KbBhDgARIsAI
zce15A5FIy0WS7I6ec2KVk
QPXVMEqlAnYis_bKB6P6lr
SIZ-wAXOyAELIaAhhEEAL
w_wcB&gclsrc=aw.ds
High O.D. Bandpass FilterChroma TechnologyET890/220mFilter the Stokes beam and transmit the pump beam
HyClone Fetal Bovine Serum (FBS)Cytiva SH300880340https://www.fishersci.com/shop/products/hyclone-fetal-bovine-serum-u-s-standard-4/SH300880340
HyClone Trypsin 0.25% (1x) SolutionCytivaSH30042.02https://www.cytivalifesciences.com/en/us/shop/cell-culture-and-fermentation/reagents-and-supplements/cell-disassociation-reagents/hyclone-trypsin-protease-p-00445
Integrated SRS Laser SystemApplied Physics & Electronics, Inc.picoEMERALDpicoEMERALD provides an output pulse at 1031 nm with 6-ps pulse width and 80-MHz repetition rate, which serves as the Stokes beam.  The frequency doubled beam at 532 nm is used to synchronously seed a picosecond optical parametric oscillator (OPO) to produce a mode-locked pulse train with five~6 ps pulse width (the idler beam of the OPO is blocked with an,interferometric filter). The output wavelength of the OPO is tunable from 720–950 nm, which serves as the pump beam. The intensity of the 1031 nm Stokes beam is modulated sinusoidally by a built-in EOM at 8 MHz with a modulation depth of more than 90%. The pump beam is spatially overlapped with the Stokes beam by using a dichroic mirror inside picoEMERALD. The temporal overlap between pump and Stokes pulses are achieved with a built-in delay stage and optimized by the SRS signal of pure D2O at the microscope.
Inverted Laser-scanning MicroscopeOlympusFV1200MPE
IX3-CBH Control boxOlympusControl the laser-scanning microscope
Kinematic Mirror MountThorlabsPOLARIS-K1-2AH2 Low-Profile Hex Adjusters
L-PhenalynineSigmaP5482-25Ghttps://www.sigmaaldrich.com/US/en/product/sigma/p5482
L-TryptophanSigmaT8941-25Ghttps://www.sigmaaldrich.com/US/en/product/sigma/t8941
LabSpec 6Horiba XploRAN/Ahttps://www.horiba.com/gbr/scientific/products/detail/action/show/Product/labspec-6-spectroscopy-suite-software-1843/
Lock-In AmplifierZurich InstrumentsN/Ahttps://www.zhinst.com/americas/en/products/shfli-lock-in-amplifier
Long-pass Dichroic Beam SplitterSemrockDi02-R980-25x36980 nm laser BrightLine single-edge laser-flat dichroic beamsplitter
MATLABMathWorksVersion: R2022bhttps://www.mathworks.com/products/new_products/latest_features.html
Microscope SlidesFisherbrand12-550-003https://www.fishersci.com/shop/products/fisherbrand-selectfrost-microscope-slides-9/12550003#?keyword=12-550-003
Microscopy Imaging SoftwareOlympusFluoView
MPLN 100x, OlympusOlympusMPLAPONhttps://www.olympus-ims.com/en/microscope/mplapon/#!cms[focus]=cmsContent11364
MPLN 50x, OlympusOlympusMPLAPON https://www.olympus-ims.com/en/microscope/mplapon/#!cms[focus]=cmsContent11363
NA Oil CondenserOlympus 6-U130https://www.hitechinstruments.com/Product-Details/olympus-achromatic-aplanatic-high-na-condneser
Nail PolishWet n WildB01EO2G5O4https://www.amazon.com/dp/B01EO2G5O4/ref=cm_sw_r_api_i_E609VVDWW
HHQP38FXXDC_0
OriginOriginLabOrigin 2022b (9.95)https://www.originlab.com/index.aspx?go=PRODUCTS/Origin
ParafilmFisher ScientificS37440https://www.fishersci.com/shop/products/parafilm-m-wrapping-film-3/p-2379782
PBS 1x (Dulbecco's Phosphate Buffered Saline)Thermofischer - Gibco14040117https://www.thermofisher.com/order/catalog/product/14040117?SID=srch-hj-14040117
Penicillin/StreptomycinThermofischer - Gibco15140122https://www.thermofisher.com/order/catalog/product/15140122
Periscope AssemblyThorlabsRS99Includes the top and bottom units, Ø1" post, and clamping fork.
picoEmerald SystemA.P.EN/Ahttps://www.ape-berlin.de/en/cars-srs/
Shielded Box with BNC ConnectorsPomona Electronics2902Aluminum Box with Cover, BNC Female/Female
Si Photodiode DetectorHome BuiltN/ADYI series
Silicon Wafer
SpacersGrace Bio-Labs654008https://gracebio.com/product/secureseal-imaging-spacers-654008/
Spontaneous Raman spectroscopyHoriba XploRAN/Ahttps://www.horiba.com/int/products/detail/action/show/Product/xploratm-plus-1528/
Stimulated Raman Scattering MicroscopyHome BuiltN/A
Touch  Panel ControllerOlympusControl the X-Y direction of the laser-scanning microscope
Trypan Blue 0.4% (0.85% NaCl) Lonza17-942Ehttps://bioscience.lonza.com/lonza_bs/US/en/Culture-Media-and-Reagents/p/000000000000181876/Trypan-Blue%2C-0-4%25-Solution"
TweezersKaverme - AmazonB07RNVXXV1https://www.amazon.com/Precision-Anti-Static-Electronics-Laboratory-Jewelry-Making/dp/B07RNVXXV1"
Two Photon Excitation Fluorescence MicroscopyHome BuiltN/A
Weighing Paper VWR12578-165https://us.vwr.com/store/product/4597617/vwr-weighing-paper
Zurich LabOneQ SoftwareZurich InstrumentsControl the Zurich lock-in amplifier

  1. Wu, G. Functional amino acids in nutrition and health. Amino Acids. 45 (3), 407-411 (2013).
  2. Wei, Z., Liu, X., Cheng, C., Yu, W., Yi, P. Metabolism of amino acids in cancer. Frontiers in Cell and Developmental Biology. 8, 603837 (2020).
  3. Parthasarathy, A., et al. A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Frontiers in Molecular Biosciences. 5, 29 (2018).
  4. Wang, H., et al. l-tryptophan activates mammalian target of rapamycin and enhances expression of tight junction proteins in intestinal porcine epithelial cells. The Journal of Nutrition. 145 (6), 1156-1162 (2015).
  5. Saxton, R. A., Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell. 168 (6), 960-976 (2017).
  6. Mossmann, D., Park, S., Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nature Reviews. Cancer. 18 (12), 744-757 (2018).
  7. Kimura, T., Watanabe, Y. Tryptophan protects hepatocytes against reactive oxygen species-dependent cell death via multiple pathways including Nrf2-dependent gene induction. Amino Acids. 48 (5), 1263-1274 (2016).
  8. Ma, Q., et al. Dietary supplementation with aromatic amino acids decreased triglycerides and alleviated hepatic steatosis by stimulating bile acid synthesis in mice. Food and Function. 12 (1), 267-277 (2021).
  9. Cheng, C., et al. Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer. International Journal of Biological Sciences. 15 (8), 1654-1663 (2019).
  10. Lubes, G., Goodarzi, M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. Journal of Pharmaceutical and Biomedical Analysis. 147, 313-322 (2018).
  11. Di Gialleonardo, V., Wilson, D. M., Keshari, K. R. The potential of metabolic imaging. Seminars in Nuclear Medicine. 46 (1), 28-39 (2016).
  12. Bowman, A. P., et al. Evaluation of lipid coverage and high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation. Analytical and Bioanalytical Chemistry. 412 (10), 2277-2289 (2020).
  13. Murphy, R. C., Hankin, J. A., Barkley, R. M. Imaging of lipid species by MALDI mass spectrometry. Journal of Lipid Research. 50, 317-322 (2009).
  14. Pirman, D. A., et al. Changes in cancer cell metabolism revealed by direct sample analysis with MALDI mass spectrometry. PLoS One. 8 (4), e61379 (2013).
  15. Li, Z., et al. Single-cell lipidomics with high structural specificity by mass spectrometry. Nature Communications. 12 (1), 2869 (2021).
  16. Miyagi, M., Kasumov, T. Monitoring the synthesis of biomolecules using mass spectrometry. Philosophical Transactions. Series A, Mathematical, Physical and Engineering Sciences. 374 (2079), 20150378 (2016).
  17. Wang, T., Shogomori, H., Hara, M., Yamada, T., Kobayashi, T. Nanomechanical recognition of sphingomyelin-rich membrane domains by atomic force microscopy. Biochemistry. 51 (1), 74-82 (2012).
  18. Fung, A. A., Shi, L. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. 12 (6), e1501 (2020).
  19. Shi, L., Fung, A. A., Zhou, A. Advances in stimulated Raman scattering imaging for tissues and animals. Quantitative Imaging in Medicine and Surgery. 11 (3), 1078-1101 (2021).
  20. Yamakoshi, H., et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. Journal of the American Chemical Society. 133 (16), 6102-6105 (2011).
  21. Shi, L., et al. Optical imaging of metabolic dynamics in animals. Nature Communications. 9 (1), 2995 (2018).
  22. Bagheri, P., Hoang, K., Fung, A. A., Hussain, S., Shi, L. Visualizing cancer cell metabolic dynamics regulated with aromatic amino acids using DO-SRS and 2PEF microscopy. Frontiers in Molecular Biosciences. 8, 779702 (2021).
  23. Li, Y., et al. Direct imaging of lipid metabolic changes in drosophila ovary during aging using DO-SRS microscopy. Frontiers in Aging. 2, 819903 (2022).
  24. Li, Y., Zhang, W., Fung, A. A., Shi, L. DO-SRS imaging of metabolic dynamics in aging Drosophila. Analyst. 146 (24), 7510-7519 (2021).
  25. Zhang, L., et al. Spectral tracing of deuterium for imaging glucose metabolism. Nature Biomedical Engineering. 3 (5), 402-413 (2019).
  26. Fung, A. A., et al. Imaging sub-cellular methionine and insulin interplay in triple negative breast cancer lipid droplet metabolism. Frontiers in Oncology. 12, 858017 (2022).
  27. Li, Y., Zhang, W., Fung, A. A., Shi, L. DO-SRS imaging of diet regulated metabolic activities in Drosophila during aging processes. Aging Cell. 21 (4), e13586 (2022).
  28. Shi, L., Wei, M., Min, W. Highly-multiplexed tissue imaging with raman dyes. Journal of Visualized Experiments. (182), e63547 (2022).
  29. Rysman, E., et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Research. 70 (20), 8117-8126 (2010).
  30. Lisec, J., Jaeger, C., Rashid, R., Munir, R., Zaidi, N. Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia. BMC Cancer. 19 (1), 501 (2019).
  31. Thiam, A. R., Dugail, I. Lipid droplet-membrane contact sites - from protein binding to function. Journal of Cell Science. 132 (12), (2019).
  32. Schott, M. B., et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. The Journal of Cell Biology. 218 (10), 3320-3335 (2019).
  33. Hoang, K., et al. Subcellular resolution DO-SRS and 2PEF imaging of metabolic dynamics regulated by L-methionine in amyotrophic lateral sclerosis. Optical Biopsy XXI: Toward Real-Time Spectroscopic Imaging and Diagnosis. SPIE. 1237303, 6-13 (2023).
  34. Jang, H., et al. Super-resolution stimulated Raman scattering microscopy with A-PoD. bioRxiv. , (2022).
  35. Li, Y., et al. Optical metabolic imaging uncovers sex- and diet-dependent lipid changes in aging drosophila brain. bioRxiv. , (2022).
  36. Zhang, W., et al. Multi-molecular hyperspectral PRM-SRS imaging. bioRxiv. , (2022).
  37. Wei, M., et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences. 116 (14), 6608-6617 (2019).
  38. Chang, T., et al. Non-invasive monitoring of cell metabolism and lipid production in 3D engineered human adipose tissues using label-free multiphoton microscopy. Biomaterials. 34 (34), 8607-8616 (2013).
  39. Leica TCS SP8 CARS CARS Microscope - Label Free Imaging. Leica Microsystems Available from: https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8-cars/downloads/ (2023)

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved