JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Imagen química bioortogonal del metabolismo celular regulado por aminoácidos aromáticos

Published: May 12th, 2023

DOI:

10.3791/65121

1Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
* These authors contributed equally

Presentamos un protocolo para visualizar directamente las actividades metabólicas en células reguladas por aminoácidos utilizando microscopía de dispersión Raman estimulada con sonda de óxido de deuterio (agua pesada D2O) (DO-SRS), que se integra con microscopía de fluorescencia por excitación de dos fotones (2PEF).

Los aminoácidos aromáticos esenciales (AAA) son componentes básicos para sintetizar nuevas biomasas en las células y mantener las funciones biológicas normales. Por ejemplo, un suministro abundante de AAA es importante para que las células cancerosas mantengan su rápido crecimiento y división. Con esto, existe una creciente demanda de un enfoque de imagen altamente específico y no invasivo con una preparación mínima de la muestra para visualizar directamente cómo las células aprovechan los AAA para su metabolismo in situ. Aquí, desarrollamos una plataforma de imágenes ópticas que combina el sondeo de óxido de deuterio (D2O) con la dispersión Raman estimulada (DO-SRS) e integra DO-SRS con fluorescencia de excitación de dos fotones (2PEF) en un solo microscopio para visualizar directamente las actividades metabólicas de las células HeLa bajo regulación AAA. En conjunto, la plataforma DO-SRS proporciona una alta resolución espacial y especificidad de proteínas y lípidos recién sintetizados en unidades celulares HeLa individuales. Además, la modalidad 2PEF puede detectar señales de autofluorescencia de nicotinamida adenina dinucleótido (NADH) y flavina de forma libre de marcas. El sistema de imágenes descrito aquí es compatible con modelos in vitro e in vivo , lo que es flexible para varios experimentos. El flujo de trabajo general de este protocolo incluye el cultivo celular, la preparación de los medios de cultivo, la sincronización celular, la fijación celular y la obtención de imágenes de muestras con las modalidades DO-SRS y 2PEF.

Al ser aminoácidos aromáticos esenciales (AAA), la fenilalanina (Phe) y el triptófano (Tryp) pueden ser absorbidos por el cuerpo humano para sintetizar nuevas moléculas para mantener las funciones biológicas normales1. La Phe es necesaria para la síntesis de proteínas, melanina y tirosina, mientras que Tryp es necesaria para la síntesis de melatonina, serotonina y niacina 2,3. Sin embargo, el consumo excesivo de estos AAA puede aumentar la diana de la vía de la rapamicina (mTOR) en los mamíferos, inhibir la proteína quinasa activada por AMP e interferir con el metabolismo mitocondrial, ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Preparación de los medios

  1. Prepare 10 mL de control y exceso de AAA en el medio Eagle modificado de Dulbecco (DMEM) que contiene 50% de D2O.
    1. Para el medio de control, mida y mezcle 10 mg de polvo de DMEM con 4,7 ml de agua bidestilada (ddH2O) en un tubo cónico de 15 ml. El polvo de DMEM contiene todos los aminoácidos en concentraciones estándar. Realice un vórtice completo e invierta el tubo para asegurarse de que la solución esté bien mezclada. Añadir 4,7.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

La adición de un exceso de AAA a concentraciones de 15x a los medios de cultivo celular que contienen D2O al 50% produjo distintas bandas C-D Raman de lípidos y proteínas recién sintetizados en células HeLa (Figura 2B). Los experimentos anteriores se realizaron con diferentes niveles de concentración, como 2x y 5x, y aunque no se presentan los datos, la concentración de 15x produjo las bandas C-D Raman más distintivas de lípidos y proteínas recién sintetizados. Específ.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Las imágenes DO-SRS y 2PEF se han aplicado para investigar la dinámica metabólica en varios modelos ex vivo, incluyendo Drosophila y tejidos humanos 21,22,23,24,26,27,33. La modalidad de imagen utilizada en este estudio integra DO-SRS y microscopía 2PEF, que puede superar a otro.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Agradecemos al Dr. Yajuan Li y Anthony Fung por su apoyo técnico, y al laboratorio Fraley por la línea celular. Agradecemos los fondos iniciales de UCSD, NIH U54CA132378, NIH 5R01NS111039, NIH R21NS125395, NIHU54DK134301, NIHU54 HL165443 y Hellman Fellow Award.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
10 mL Serological Pipettes Avantor (by VWR)75816-100https://us.vwr.com/store/product?keyword=75816-100
15 mL Conical Centrifuge TubeVWR89039-664https://mms.mckesson.com/product/1001859/VWR-International-89039-664
16% Formaldehyde, Methanol-freeThermoFisher Scientific28906https://www.thermofisher.com/order/catalog/product/28906
24-well plateFisherbrandFB0112929https://www.fishersci.com/shop/products/24-well-tc-multidish-100-cs/FB012929#?keyword=FB012929
25 mm Syringe Filter, 2 μm PESFoxx Life Sciences381-2216-OEMhttps://www.foxxlifesciences.com/collections/pes-syringe-filters/products/381-2216-oem?variant=16274336003
460 nm Filter CubeOlympusOCT-ET460/50M32
AC Adapters of the Power Supply for LD OBIS 6 Laser RemoteOlympusSupply power to the laser
Band-pass FilterKR ElectronicsKR27248 MHz
BNC 50 Ohm Terminator Mini CircuitsSTRM-50
BNC CableThorlabs2249-CCoaxial Cable, BNC Male/Male
Broadband Dielectric MirrorThorlabsBB1-E03750 - 1100 nm
Centrifuge
CondenserOlympus
Cover GlassCorning2850-25https://ecatalog.corning.com/life-sciences/b2b/NL/en/Glassware/Cover-Glass/Corning%C2%AE-Square-%231%C2%BD-Cover-Glass/p/2850-25
DC power supplyTopWard6302D
Dichroic MountThorlabsKM100CL
Dimethyl Sulfoxide Cell Culture Reagentmpbio 196055https://www.mpbio.com/0219605525-dimethyl-sulfoxide-cf
Dulbecco's Modified Eagle’s Medium without Methionine, Threonine, and Sodium PyruvateMilliporeSigma38210000https://www.usbio.net/media/D9800-22/dulbeccorsquos-mem-dmem-wsodium-bicarbonate-wo-methionine-threonine-sodium-pyruvate-powder
With Sodium Bicarbonate and without Methionine, Threonine, and Sodium Pyruvate 
Dulbecco’s Modified Eagle’s MediumCorningMT10027CVhttps://www.fishersci.com/shop/products/dmem-dulbecco-s-modified-eagle-s-medium-4/MT10027CV#:~:text=Dulbecco's%20Modified%20Eagle's%20Medium%20
FIJI ImageJImageJVersion 1.53t 24 August 2022https://imagej.net/software/fiji/downloads
Heavy Water (Deuterium Oxide)Cambridge Isotope Laboratories, Inc.7732-18-5https://shop.isotope.com/productdetails.aspx?itemno=DLM-4-1L
Hela CellsATCCCCL-2https://www.atcc.org/products/ccl-2
HemocymeterMilliporeSigmaZ359629-1EAhttps://www.sigmaaldrich.com/US/en/product/sigma/z359629?gclid=Cj0KCQiA37KbBhDgARIsAI
zce15A5FIy0WS7I6ec2KVk
QPXVMEqlAnYis_bKB6P6lr
SIZ-wAXOyAELIaAhhEEAL
w_wcB&gclsrc=aw.ds
High O.D. Bandpass FilterChroma TechnologyET890/220mFilter the Stokes beam and transmit the pump beam
HyClone Fetal Bovine Serum (FBS)Cytiva SH300880340https://www.fishersci.com/shop/products/hyclone-fetal-bovine-serum-u-s-standard-4/SH300880340
HyClone Trypsin 0.25% (1x) SolutionCytivaSH30042.02https://www.cytivalifesciences.com/en/us/shop/cell-culture-and-fermentation/reagents-and-supplements/cell-disassociation-reagents/hyclone-trypsin-protease-p-00445
Integrated SRS Laser SystemApplied Physics & Electronics, Inc.picoEMERALDpicoEMERALD provides an output pulse at 1031 nm with 6-ps pulse width and 80-MHz repetition rate, which serves as the Stokes beam.  The frequency doubled beam at 532 nm is used to synchronously seed a picosecond optical parametric oscillator (OPO) to produce a mode-locked pulse train with five~6 ps pulse width (the idler beam of the OPO is blocked with an,interferometric filter). The output wavelength of the OPO is tunable from 720–950 nm, which serves as the pump beam. The intensity of the 1031 nm Stokes beam is modulated sinusoidally by a built-in EOM at 8 MHz with a modulation depth of more than 90%. The pump beam is spatially overlapped with the Stokes beam by using a dichroic mirror inside picoEMERALD. The temporal overlap between pump and Stokes pulses are achieved with a built-in delay stage and optimized by the SRS signal of pure D2O at the microscope.
Inverted Laser-scanning MicroscopeOlympusFV1200MPE
IX3-CBH Control boxOlympusControl the laser-scanning microscope
Kinematic Mirror MountThorlabsPOLARIS-K1-2AH2 Low-Profile Hex Adjusters
L-PhenalynineSigmaP5482-25Ghttps://www.sigmaaldrich.com/US/en/product/sigma/p5482
L-TryptophanSigmaT8941-25Ghttps://www.sigmaaldrich.com/US/en/product/sigma/t8941
LabSpec 6Horiba XploRAN/Ahttps://www.horiba.com/gbr/scientific/products/detail/action/show/Product/labspec-6-spectroscopy-suite-software-1843/
Lock-In AmplifierZurich InstrumentsN/Ahttps://www.zhinst.com/americas/en/products/shfli-lock-in-amplifier
Long-pass Dichroic Beam SplitterSemrockDi02-R980-25x36980 nm laser BrightLine single-edge laser-flat dichroic beamsplitter
MATLABMathWorksVersion: R2022bhttps://www.mathworks.com/products/new_products/latest_features.html
Microscope SlidesFisherbrand12-550-003https://www.fishersci.com/shop/products/fisherbrand-selectfrost-microscope-slides-9/12550003#?keyword=12-550-003
Microscopy Imaging SoftwareOlympusFluoView
MPLN 100x, OlympusOlympusMPLAPONhttps://www.olympus-ims.com/en/microscope/mplapon/#!cms[focus]=cmsContent11364
MPLN 50x, OlympusOlympusMPLAPON https://www.olympus-ims.com/en/microscope/mplapon/#!cms[focus]=cmsContent11363
NA Oil CondenserOlympus 6-U130https://www.hitechinstruments.com/Product-Details/olympus-achromatic-aplanatic-high-na-condneser
Nail PolishWet n WildB01EO2G5O4https://www.amazon.com/dp/B01EO2G5O4/ref=cm_sw_r_api_i_E609VVDWW
HHQP38FXXDC_0
OriginOriginLabOrigin 2022b (9.95)https://www.originlab.com/index.aspx?go=PRODUCTS/Origin
ParafilmFisher ScientificS37440https://www.fishersci.com/shop/products/parafilm-m-wrapping-film-3/p-2379782
PBS 1x (Dulbecco's Phosphate Buffered Saline)Thermofischer - Gibco14040117https://www.thermofisher.com/order/catalog/product/14040117?SID=srch-hj-14040117
Penicillin/StreptomycinThermofischer - Gibco15140122https://www.thermofisher.com/order/catalog/product/15140122
Periscope AssemblyThorlabsRS99Includes the top and bottom units, Ø1" post, and clamping fork.
picoEmerald SystemA.P.EN/Ahttps://www.ape-berlin.de/en/cars-srs/
Shielded Box with BNC ConnectorsPomona Electronics2902Aluminum Box with Cover, BNC Female/Female
Si Photodiode DetectorHome BuiltN/ADYI series
Silicon Wafer
SpacersGrace Bio-Labs654008https://gracebio.com/product/secureseal-imaging-spacers-654008/
Spontaneous Raman spectroscopyHoriba XploRAN/Ahttps://www.horiba.com/int/products/detail/action/show/Product/xploratm-plus-1528/
Stimulated Raman Scattering MicroscopyHome BuiltN/A
Touch  Panel ControllerOlympusControl the X-Y direction of the laser-scanning microscope
Trypan Blue 0.4% (0.85% NaCl) Lonza17-942Ehttps://bioscience.lonza.com/lonza_bs/US/en/Culture-Media-and-Reagents/p/000000000000181876/Trypan-Blue%2C-0-4%25-Solution"
TweezersKaverme - AmazonB07RNVXXV1https://www.amazon.com/Precision-Anti-Static-Electronics-Laboratory-Jewelry-Making/dp/B07RNVXXV1"
Two Photon Excitation Fluorescence MicroscopyHome BuiltN/A
Weighing Paper VWR12578-165https://us.vwr.com/store/product/4597617/vwr-weighing-paper
Zurich LabOneQ SoftwareZurich InstrumentsControl the Zurich lock-in amplifier

  1. Wu, G. Functional amino acids in nutrition and health. Amino Acids. 45 (3), 407-411 (2013).
  2. Wei, Z., Liu, X., Cheng, C., Yu, W., Yi, P. Metabolism of amino acids in cancer. Frontiers in Cell and Developmental Biology. 8, 603837 (2020).
  3. Parthasarathy, A., et al. A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Frontiers in Molecular Biosciences. 5, 29 (2018).
  4. Wang, H., et al. l-tryptophan activates mammalian target of rapamycin and enhances expression of tight junction proteins in intestinal porcine epithelial cells. The Journal of Nutrition. 145 (6), 1156-1162 (2015).
  5. Saxton, R. A., Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell. 168 (6), 960-976 (2017).
  6. Mossmann, D., Park, S., Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nature Reviews. Cancer. 18 (12), 744-757 (2018).
  7. Kimura, T., Watanabe, Y. Tryptophan protects hepatocytes against reactive oxygen species-dependent cell death via multiple pathways including Nrf2-dependent gene induction. Amino Acids. 48 (5), 1263-1274 (2016).
  8. Ma, Q., et al. Dietary supplementation with aromatic amino acids decreased triglycerides and alleviated hepatic steatosis by stimulating bile acid synthesis in mice. Food and Function. 12 (1), 267-277 (2021).
  9. Cheng, C., et al. Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer. International Journal of Biological Sciences. 15 (8), 1654-1663 (2019).
  10. Lubes, G., Goodarzi, M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. Journal of Pharmaceutical and Biomedical Analysis. 147, 313-322 (2018).
  11. Di Gialleonardo, V., Wilson, D. M., Keshari, K. R. The potential of metabolic imaging. Seminars in Nuclear Medicine. 46 (1), 28-39 (2016).
  12. Bowman, A. P., et al. Evaluation of lipid coverage and high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation. Analytical and Bioanalytical Chemistry. 412 (10), 2277-2289 (2020).
  13. Murphy, R. C., Hankin, J. A., Barkley, R. M. Imaging of lipid species by MALDI mass spectrometry. Journal of Lipid Research. 50, 317-322 (2009).
  14. Pirman, D. A., et al. Changes in cancer cell metabolism revealed by direct sample analysis with MALDI mass spectrometry. PLoS One. 8 (4), e61379 (2013).
  15. Li, Z., et al. Single-cell lipidomics with high structural specificity by mass spectrometry. Nature Communications. 12 (1), 2869 (2021).
  16. Miyagi, M., Kasumov, T. Monitoring the synthesis of biomolecules using mass spectrometry. Philosophical Transactions. Series A, Mathematical, Physical and Engineering Sciences. 374 (2079), 20150378 (2016).
  17. Wang, T., Shogomori, H., Hara, M., Yamada, T., Kobayashi, T. Nanomechanical recognition of sphingomyelin-rich membrane domains by atomic force microscopy. Biochemistry. 51 (1), 74-82 (2012).
  18. Fung, A. A., Shi, L. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. 12 (6), e1501 (2020).
  19. Shi, L., Fung, A. A., Zhou, A. Advances in stimulated Raman scattering imaging for tissues and animals. Quantitative Imaging in Medicine and Surgery. 11 (3), 1078-1101 (2021).
  20. Yamakoshi, H., et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. Journal of the American Chemical Society. 133 (16), 6102-6105 (2011).
  21. Shi, L., et al. Optical imaging of metabolic dynamics in animals. Nature Communications. 9 (1), 2995 (2018).
  22. Bagheri, P., Hoang, K., Fung, A. A., Hussain, S., Shi, L. Visualizing cancer cell metabolic dynamics regulated with aromatic amino acids using DO-SRS and 2PEF microscopy. Frontiers in Molecular Biosciences. 8, 779702 (2021).
  23. Li, Y., et al. Direct imaging of lipid metabolic changes in drosophila ovary during aging using DO-SRS microscopy. Frontiers in Aging. 2, 819903 (2022).
  24. Li, Y., Zhang, W., Fung, A. A., Shi, L. DO-SRS imaging of metabolic dynamics in aging Drosophila. Analyst. 146 (24), 7510-7519 (2021).
  25. Zhang, L., et al. Spectral tracing of deuterium for imaging glucose metabolism. Nature Biomedical Engineering. 3 (5), 402-413 (2019).
  26. Fung, A. A., et al. Imaging sub-cellular methionine and insulin interplay in triple negative breast cancer lipid droplet metabolism. Frontiers in Oncology. 12, 858017 (2022).
  27. Li, Y., Zhang, W., Fung, A. A., Shi, L. DO-SRS imaging of diet regulated metabolic activities in Drosophila during aging processes. Aging Cell. 21 (4), e13586 (2022).
  28. Shi, L., Wei, M., Min, W. Highly-multiplexed tissue imaging with raman dyes. Journal of Visualized Experiments. (182), e63547 (2022).
  29. Rysman, E., et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Research. 70 (20), 8117-8126 (2010).
  30. Lisec, J., Jaeger, C., Rashid, R., Munir, R., Zaidi, N. Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia. BMC Cancer. 19 (1), 501 (2019).
  31. Thiam, A. R., Dugail, I. Lipid droplet-membrane contact sites - from protein binding to function. Journal of Cell Science. 132 (12), (2019).
  32. Schott, M. B., et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. The Journal of Cell Biology. 218 (10), 3320-3335 (2019).
  33. Hoang, K., et al. Subcellular resolution DO-SRS and 2PEF imaging of metabolic dynamics regulated by L-methionine in amyotrophic lateral sclerosis. Optical Biopsy XXI: Toward Real-Time Spectroscopic Imaging and Diagnosis. SPIE. 1237303, 6-13 (2023).
  34. Jang, H., et al. Super-resolution stimulated Raman scattering microscopy with A-PoD. bioRxiv. , (2022).
  35. Li, Y., et al. Optical metabolic imaging uncovers sex- and diet-dependent lipid changes in aging drosophila brain. bioRxiv. , (2022).
  36. Zhang, W., et al. Multi-molecular hyperspectral PRM-SRS imaging. bioRxiv. , (2022).
  37. Wei, M., et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences. 116 (14), 6608-6617 (2019).
  38. Chang, T., et al. Non-invasive monitoring of cell metabolism and lipid production in 3D engineered human adipose tissues using label-free multiphoton microscopy. Biomaterials. 34 (34), 8607-8616 (2013).
  39. Leica TCS SP8 CARS CARS Microscope - Label Free Imaging. Leica Microsystems Available from: https://www.leica-microsystems.com/products/confocal-microscopes/p/leica-tcs-sp8-cars/downloads/ (2023)

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved