Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we show how to process tree cores with an X-ray computed tomography toolchain. Except for chemical extraction for some purposes, no further physical lab treatment is needed. The toolchain can be used for biomass estimations, for obtaining MXD/tree-ring width data as well as for obtaining quantitative wood anatomy data.

Abstract

An X-ray computed tomography (CT) toolchain is presented to obtain tree-ring width (TRW), maximum latewood density (MXD), other density parameters, and quantitative wood anatomy (QWA) data without the need for labor-intensive surface treatment or any physical sample preparation. The focus here is on increment cores and scanning procedures at resolutions ranging from 60 µm down to 4 µm. Three scales are defined at which wood should be looked at: (i) inter-ring scale, (ii) ring scale, i.e., tree-ring analysis and densitometry scale, as well as (iii) anatomical scale, the latter approaching the conventional thin-section quality. Custom-designed sample holders for each of these scales enable high-throughput scanning of multiple increment cores. A series of software routines were specifically developed to efficiently treat three-dimensional X-ray CT images of the tree cores for TRW and densitometry. This work briefly explains the basic principles of CT, which are needed for a proper understanding of the protocol. The protocol is presented for some known species that are commonly used in dendrochronology. The combination of rough density estimates, TRW and MXD data, as well as quantitative anatomy data, allows us to broaden and deepen current analyses for climate reconstructions or tree response, as well as further develop the field of dendroecology/climatology and archeology.

Introduction

Wood density is an easy-to-measure variable1 that reflects both the anatomical and chemical properties of the wood2. In biomass estimations of aboveground biomass, wood density is an important weighing variable 3,4,5, that is multiplied with the dimensions of the tree and a factor representing the carbon content of the wood. Wood density is tightly linked to the mechanical properties of timber6 and reflects the life history of a tree7.

Cell wall density ....

Protocol

1. Core sampling

  1. Sample the tree with a Pressler borer. Consult references on how to core a tree manually39. This toolchain is presented for 5.15 mm cores.
  2. Put the tree cores unglued into 6 mm paper straws or in any other receptor that does not require glue. Do not glue the tree cores on a wooden support. If the cores were already mounted, unmount them with scalpel/saw or solvent depending on the glue type.
  3. Avoid wrapping them in plastic tubes, try to dry them first to avoid mold growth and fungal decay.
  4. Use pencil to write on the paper straws, since the extraction could fade marker wri....

Representative Results

If the goal is biomass estimation or tree growth increment of many samples, i.e., inter-ring scale (Figure 1), then sample holder 1 (Figure 5) is used to scan samples to obtain density profiles (see step 5.4.3) and estimates of tree growth, e.g., for fast-growing trees with large TRW, which allows for a coarser resolution. Figure 12 shows an example of both pith-to-bark and axial density trends of T. superba, a species from.......

Discussion

Critical steps within the protocol
Critical steps within the protocol include proper handling of the increment borer to obtain high-quality increment cores (step 1.1. and see39) to avoid bits and pieces. Next, it is essential that cores be left unmounted (but see26), both for insertion in the sample holder (Figure 5, see21) as well as for proper resin extraction50 and for possible future ana.......

Disclosures

The authors have no conflicts of interest to disclose.

Acknowledgements

We thank the three anonymous reviewers for their feedback and suggestions. This research was funded by the BOF Special Research Fund for JVdB (BOF Starting Grant BOF.STG.2018.0007.01), for the UGCT as a Center of Expertise (BOF.EXP.2017.0007) and as a Core Facility (BOF.COR.2022.008), The authors also acknowledge the Research Foundation Flanders (G019521N and G009720N), and the UGent Industrial Research Fund (IOF) for the financial support to the infrastructure through grant IOF.APP.2021.0005 (project FaCT F2021/IOF-Equip/021).

....

Materials

NameCompanyCatalog NumberComments
6 mm paper straws http://artstraws.com/education/product/artstraws-thick-asst-cols/Coring
Aluminium core holders
ASTM standard ASTM D 1107 – 96
Cardboard postal tubeshttps://www.rajapack.co.uk/envelopes-mailing-bags/postal-tubes/1-5-2mm-brown-cardboard-postal-tubes_PDT05623.html
Column drill
Computer hardware for reconstruction and analysisX-ray CT scanning
Cooling 
Drying oven
Ethanol 
Flask for under soxhlet (2000 ml)
Floral foamhttps://www.oasisfloral.eu/Sample holder type 1
Glass beads to fill void volume of Soxhlet to save solvent
Glue
Hot water bath https://www.memmert.com/products/water-baths/water-bath/#!filters=%7B%7DSoxhlet extraction
Increment borer https://haglofsweden.com/project/increment-borers/
Plastic cylinder Moonen et al. 2022 Sample holder type 2
Plastic cylinders
Reservoir
Tailored soxhlet apparatus 
Toluene 
Water pump 
X-ray CT scanner

References

  1. Björklund, J., et al. The utility of bulk wood density for tree-ring research. Dendrochronologia. 69 (September), 125880 (2021).
  2. Lachenbruch, B., Mcculloh, K. A.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Tree Core AnalysisX ray Computed TomographyClimate ReconstructionTree ResponseWood GrowthHigh throughput ScanningTree ring WidthMaximum Latewood DensityQuantitative Wood AnatomyDensity ProfilesIncrement CoresDendrochronology

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved