Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
L’ablation laser ultrarapide dans un liquide est une technique précise et polyvalente pour synthétiser des nanomatériaux (nanoparticules [NPs] et nanostructures [NSs]) dans des environnements liquides/aériens. Les nanomatériaux ablatés par laser peuvent être fonctionnalisés avec des molécules actives Raman pour améliorer le signal Raman des analytes placés sur ou à proximité des NS/NPs.
La technique d’ablation laser ultrarapide dans les liquides a évolué et mûri au cours de la dernière décennie, avec plusieurs applications imminentes dans divers domaines tels que la détection, la catalyse et la médecine. La particularité de cette technique est la formation de nanoparticules (colloïdes) et de nanostructures (solides) en une seule expérience avec des impulsions laser ultracourtes. Nous travaillons sur cette technique depuis quelques années, en étudiant son potentiel en utilisant la technique de diffusion Raman améliorée en surface (SERS) dans les applications de détection de matières dangereuses. Les substrats ultrarapides ablatés par laser (solides et colloïdes) pourraient détecter plusieurs molécules d’analyte à l’état de traces/mélanges, y compris des colorants, des explosifs, des pesticides et des biomolécules. Nous présentons ici quelques-uns des résultats obtenus en utilisant les cibles d’Ag, d’Au, d’Ag-Au et de Si. Nous avons optimisé les nanostructures (NS) et les nanoparticules (NPs) obtenues (dans les liquides et l’air) en utilisant différentes durées d’impulsions, longueurs d’onde, énergies, formes d’impulsions et géométries d’écriture. Ainsi, divers NS et NP ont été testés pour leur efficacité à détecter de nombreuses molécules d’analyte à l’aide d’un spectromètre Raman simple et portable. Cette méthodologie, une fois optimisée, ouvre la voie à des applications de détection sur le terrain. Nous discutons des protocoles dans (a) la synthèse des NPs/NSs par ablation laser, (b) la caractérisation des NPs/NSs, et (c) leur utilisation dans les études de détection basées sur le SERS.
L’ablation laser ultrarapide est un domaine en évolution rapide des interactions laser-matériau. Des impulsions laser de haute intensité avec des durées d’impulsion de l’ordre de la femtoseconde (fs) à la picoseconde (ps) sont utilisées pour générer une ablation précise du matériau. Par rapport aux impulsions laser nanosecondes (ns), les impulsions laser ps peuvent ablater les matériaux avec une précision et une exactitude plus élevées en raison de leur durée d’impulsion plus courte. Ils peuvent générer moins de dommages collatéraux, de débris et de contamination du matériau ablaté en raison de moins d’effets thermiques. Cependant, les lasers ps sont généralement plus....
La figure 1A présente un organigramme de protocole typique de l’application de NP ou de NS à ablation ultrarapide dans la détection de traces de molécules via SERS.
1. Synthétiser les NP/NS métalliques
REMARQUE : En fonction de l’exigence/de l’application, choisissez le matériau cible, le liquide environnant et les paramètres d’ablation laser.
Ici:
Matériaux cibles : Ag
Liquide environnant : 10 mL de DI
Paramètres du laser : 355/532/1064 nm ; 30 ps ; 10 Hz ; 15 mJ
Lentille de mise au point : Lentille plan-convexe (distance focale : 10 cm)
Par....
Les NPs d’argent ont été synthétisés par ablation laser ps en technique liquide. Ici, un système laser ps avec une durée d’impulsion de ~30 ps fonctionnant à une fréquence de répétition de 10 Hz et avec une longueur d’onde de 355, 532 ou 1 064 nm a été utilisé. L’énergie d’impulsion d’entrée a été ajustée à 15 mJ. Les impulsions laser ont été focalisées à l’aide d’une lentille plan-convexe d’une distance focale de 10 cm. La mise au point laser doit être exactement sur la.......
Dans le nettoyage par ultrasons, le matériau à nettoyer est immergé dans un liquide et des ondes sonores à haute fréquence sont appliquées au liquide à l’aide d’un nettoyeur à ultrasons. Les ondes sonores provoquent la formation et l’implosion de minuscules bulles dans le liquide, générant une énergie et une pression locales intenses qui délogent et éliminent la saleté et d’autres contaminants de la surface du matériau. Lors de l’ablation laser, un polariseur Brewster et une combinaison de plaque.......
Les auteurs n’ont rien à divulguer.
Nous remercions l’Université d’Hyderabad pour son soutien dans le cadre du projet UOH/IOE/RC1/RC1-2016 de l’Institut de l’Éminence (IoE). La subvention IoE a été obtenue par notification F11/9/2019-U3(A) du MHRD, Inde. DRDO, Inde est reconnue pour son soutien financier par l’intermédiaire de l’ACRHEM [[#ERIP/ER/1501138/M/01/319/D(R&D)]. Nous remercions l’École de physique, UoH, pour la caractérisation FESEM et les installations de XRD. Nous tenons à exprimer notre sincère gratitude au professeur SVS Nageswara Rao et à son groupe pour leur précieuse collaboration, leurs contributions et leur soutien. Nous tenons à exprimer notre gratitude aux membres passés et présents....
Name | Company | Catalog Number | Comments |
Alloys | Local goldsmith | N/A | 99% pure |
Axicon | Thorlabs | N/A | 100, IR range, AR coated, AX1210-B |
Ethanol | Supelco, India | CAS No. 64-17-5 | |
Femtosecond laser | femtosecond (fs) laser amplifier Libra HE, Coherent | N/A | Pulse duraction 50 fs; wavelenngth 800 nm; Rep rate 1 KHz; Pulse Energy: 4 mJ |
FESEM | Carl ZEISS, Ultra 55 | N/A | |
Gatan DM3 | www.gatan.com | Gatan Microscopy Suite 3.x | |
Gold target | Sigma-Aldrich, India | 99% pure | |
HAuCl4.3H2O | Sigma-Aldrich, India | CAS No. 16961-25-4 | |
High resolution translational stages | Newport SPECTRA PHYSICS GMBI | N/A | M-443 High-Performance Low-Profile Ball Bearing Linear Stage; The stage is only 1 inch high, and has 2 inches of travel. |
Micro Raman | Horiba LabRAM | N/A | Grating-1,800 and 600 grooves/mm; Wavelength of excitation-785 nm,632 nm, 532 nm, 325 nm; Objectives 10x, 20x, 50 x, 100x; CCD detector |
Mirrors | Edmund Optics | N/A | Suitable mirrors for specific wavelength of laser |
Motion controller | NEWPORT SPECTRA PIYSICS GMBI | N/A | ESP300 Controller-3 axes control |
Origin | www.originlab.com | Origin 2018 | |
Picosecond laser | EKSPLA 2251 | N/A | Pulse duraction 30ps; wavelenngth 1064 nm, 532 nm, 355 nm; Rep rate 10 Hz; Pulse Energy: 1.5 to 30 mJ |
Planoconvex lens | N/A | focal length 10 cm | |
Raman portable | i-Raman plus, B&W Tek, USA | N/A | 785 nm, ~ 100 µm laser spot fiber optic probe excitation and collection |
Silicon wafer | Macwin India Ltd. | 1–10 Ω-cm, p (100)-type | |
Silver salt (AgNO3) | Finar, India | CAS No. 7783-90-6 | |
Silver target | Sigma-Aldrich, India | CAS NO 7440-22-4 | 99% pure |
TEM | Tecnai TEM | N/A | |
TEM grids | Sigma-Aldrich, India | TEM-CF200CU | Copper Grid Carbon Coated 200 mesh |
Thiram | Sigma-Aldrich, India | CAS No. 137-26-8 | |
UV | Jasco V-670 | N/A | |
XRD | Bruker D8 advance | N/A |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationExplorer plus d’articles
This article has been published
Video Coming Soon