A subscription to JoVE is required to view this content. Sign in or start your free trial.
Fission yeast is used here as a heterologous host to express bacterial cytoskeletal proteins such as FtsZ and MreB as translational fusion proteins with GFP to visualize their polymerization. Also, compounds that affect polymerization are identified by imaging using a fluorescence microscope.
Bacterial cytoskeletal proteins such as FtsZ and MreB perform essential functions such as cell division and cell shape maintenance. Further, FtsZ and MreB have emerged as important targets for novel antimicrobial discovery. Several assays have been developed to identify compounds targeting nucleotide binding and polymerization of these cytoskeletal proteins, primarily focused on FtsZ. Moreover, many of the assays are either laborious or cost-intensive, and ascertaining whether these proteins are the cellular target of the drug often requires multiple methods. Finally, the toxicity of the drugs to eukaryotic cells also poses a problem. Here, we describe a single-step cell-based assay to discover novel molecules targeting bacterial cytoskeleton and minimize hits that might be potentially toxic to eukaryotic cells. Fission yeast is amenable to high-throughput screens based on microscopy, and a visual screen can easily identify any molecule that alters the polymerization of FtsZ or MreB. Our assay utilizes the standard 96-well plate and relies on the ability of the bacterial cytoskeletal proteins to polymerize in a eukaryotic cell such as the fission yeast. While the protocols described here are for fission yeast and utilize FtsZ from Staphylococcus aureus and MreB from Escherichia coli, they are easily adaptable to other bacterial cytoskeletal proteins that readily assemble into polymers in any eukaryotic expression hosts. The method described here should help facilitate further discovery of novel antimicrobials targeting bacterial cytoskeletal proteins.
The widespread resistance to nearly all antibiotics presently employed to combat bacterial infections has created an immediate necessity for novel categories of antibiotics. A 2019 report indicated that antibiotic-resistant infections resulted in the loss of 1.27 million lives, contributing to an overall tally of 4.95 million deaths when considering complications from resistant bacterial infections1. While still effective in clinical practice, the current arsenal of antibiotics predominantly targets a narrow spectrum of cellular processes, primarily focusing on cell wall, DNA, and protein synthesis. Over the past half-century, fewer than 30 pro....
1. Expression of GFP-tagged bacterial cytoskeleton proteins in S. pombe
NOTE: Please see Table 1 for information on all plasmids and strains used here. Please see Table 2 for all media compositions.
Setting up the 96-well plate for the screening of drugs
Use of S. pombe to express a C- terminally GFP tagged S. aureus FtsZ from a vector (pREP42) containing the medium-strength thiamine repressible promoter nmt41has been previously established17 and similarly, the E. coli MreB tagged with N- terminal GFP was also expressed in S. pombe14. We have also shown that PC190723, a specific inhibitor of SaFtsZ and.......
Antimicrobial resistance (AMR) is a serious global health threat, and there is an urgent need for new antibiotics with novel targets. The bacterial cytoskeleton has emerged as an attractive target for developing new antibiotics, with small molecule inhibitors of the cell division protein FtsZ, such as TXA709, already in Phase-I clinical trials30. Several methods have been developed to identify inhibitors of FtsZ polymerization7,31. We have.......
SMP, SR and AKS acknowledge the fellowships received from the National Institute of Science Education and Research, Department of Atomic Energy. RS acknowledges intramural funding support from the Department of Atomic Energy, and this work is supported through a research grant to RS (BT/PR42977/MED/29/1603/2022) from the Department of Biotechnology (DBT). The authors also acknowledge V Badireenath Konkimalla for his comments, suggestions, and discussions throughout the development of the protocol.
....Name | Company | Catalog Number | Comments |
96 Well CC2 Optical CVG Sterile, w/Lid. Black | Thermo Scientificâ„¢ | 160376 | |
96-well plate | Corning |  CLS3370 | |
A22 Hydrochloride | Sigma | SML0471 | Dissolved in DMSO |
Adenine | FormediumTM | DOC0229 | 225 mg/L of media |
Concanavalin A | Sigma | C5275-5MG | |
DMSO | Sigma | 317275 | |
Edinburg minimal medium (EMM Agar or EMM Broth) | FormediumTM | PMD0210 | See below for composition |
EDTA | Sigma | EDS-500G | |
epMotion® 96 with 2-position slider | Eppendorf | 5069000101 | |
Histidine | FormediumTM | DOC0144 | 225 mg/L of media |
Leica DMi8 inverted fluorescence microscope | Leica Microsystems | German company | |
Leucine | FormediumTM | DOC0157 | 225 mg/L of media |
Lithium acetate | Sigma | 517992-100G | |
PC190723 | Merck | 344580 | Dissolved in DMSO |
Polyethylene glycol (PEG) | Sigma | 202398 | |
Thiamine | Sigma | T4625 | Filter sterilised |
Tris-Hydrochloride | MP | 194855 | |
Uracil | FormediumTM | DOC0214 | 225 mg/L of media, Store solution at 36°C |
YES (Yeast extract + supplements) Agar | FormediumTM | PCM0410 | See below for composition |
YES (Yeast extract + supplements) Broth | FormediumTM | PCM0310 | See below for composition |
Yeast (S. pombe) media | |||
Yeast extract + supplements (YES) | |||
Composition | g/L | ||
Yeast extract | 5 | ||
Dextrose | 30 | ||
Agar | 17 | ||
Adenine | 0.05 | ||
L-Histidine | 0.05 | ||
L-Leucine | 0.05 | ||
L-Lysine HCl | 0.05 | ||
Uracil | 0.05 | ||
Edinburg minimal medium (EMM) | |||
Composition | g/L | concentration | |
potassium hydrogen phthallate | 3 | 14.7mM | |
Na2HPO4Â | 2.2 | 15.5 mM | |
NH4Cl | 5 | 93.5 mM | |
glucose | 2% (w/v) or 20 g/L | Â 111 mM | |
Salts (stock x 50) | 20 mL/L (v/v) | ||
Vitamins (stock x 1000) | 1 mL/L (v/v) | ||
Minerals (Stock x 10,000) | 0.1 mL/L (v/v) | ||
Salts x 50Â | 52.5 g/l MgCl2.6H20 (0.26 M)Â | 52.5 | 0.26 M |
0.735 mg/l CaCl2.2H20 (4.99 mM)Â | 0.000735 | 4.99 mM | |
50 g/l KCl (0.67 M)Â | 50 | 0.67 M | |
2 g/l Na2SO4 (14.l mM) | 2 | 14.1 mM | |
Vitamins x 1000 | 1 g/l pantothenic acid | 1 | 4.20 mM |
10 g/l nicotinic acid | 10 | 81.2 mM | |
10 g/l inositol | 10 | 55.5 mM | |
10 mg/l biotin | 0.01 | 40.8 µM | |
Minerals x 10,000Â | boric acid | 5 | 80.9 mM |
MnSO4Â Â | 4 | 23.7 mM | |
ZnSO4.7H2O | 4 | 13.9 mM | |
FeCl2.6H2OÂ Â | 2 | 7.40 mM | |
molybdic acid | 0.4 | 2.47 mM | |
KIÂ | 1 | 6.02 mM | |
CuSO4.5H2OÂ | 0.4 | 1.60 mM | |
citric acid | 10 | 47.6 mM | |
Strains/ Plasmids | |||
Strains | Description | Reference | |
CCD190 | Escherichia coli DH10β | Invitrogen | |
CCDY4Â | MBY3532; CCDY346/pREP42- GFP-EcMreB | Srinivasan et al., 2007 | |
CCDY340 | CCDY346/pREP42- SaFtsZ-GFP | Sharma et al., 2023 | |
CCDY346 | MBY192; Schizosaccharomyces pombe [ura4-D18, leu1-32, h-] | Dr. Mithilesh Mishra (DBS, TIFR) | |
Plasmids | |||
pCCD3 | pREP42-GFP-EcMreB | Srinivasan et al., 2007 | |
pCCD713 | pREP42-SaFtsZ-GFP | Sharma et al., 2023 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved