A non-invasive means to evaluate the success of myoblast transplantation is described. The method takes advantage of a unified fusion reporter gene composed of genes whose expression can be imaged with different imaging modalities. Here, we make use of a fluc reporter gene sequence to target cells via bioluminescence imaging.
We describe the method of programming stem cells to overexpress therapeutic factors for angiogenesis using biodegradable polymeric nanoparticles. Processes described include polymer synthesis, transfecting adipose-derived stem cells in vitro, and validating the efficacy of programmed stem cells to promote angiogenesis in a murine hindlimb ischemia model.
Circulating tumor cells (CTCs) are prognostic in several metastatic cancers. This manuscript describes the gold standard CellSearch system (CSS) CTC enumeration platform and highlights common misclassification errors. In addition, two adapted protocols are described for user-defined marker characterization of CTCs and CTC enumeration in preclinical mouse models of metastasis using this technology.
This article provides detailed methodologies for the use of three-dimensional (3D) assays to quantify breast cancer cell invasion. Specifically, we discuss the procedures required to set up such assays, quantification, and data analysis, as well as methods to examine the loss of membrane integrity that occurs when cells invade.
This manuscript describes an ex vivo model system comprised of organ-conditioned media derived from the lymph node, bone, lung, and brain of mice. This model system can be used to identify and study organ-derived soluble factors and their effects on the organ tropism and metastatic behavior of cancer cells.
We describe here a flow cytometry-based in vivo killing assay that enables examination of immunodominance in cytotoxic T lymphocyte (CTL) responses to a model tumor antigen. We provide examples of how this elegant assay may be employed for mechanistic studies and for drug efficacy testing.
This experimental protocol describes the isolation of BCSCs from breast cancer cell and tissue samples as well as the in vitro and in vivo assays that can be used to assess BCSC phenotype and function.
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır