Oturum Aç

While it is unclear how molecules move between adjacent Golgi cisternae, it is apparent that the molecules move from cis- cisterna, the entry face, to the trans- cisterna, the exit face. Experiments initially suggested vesicles that bud from one cisterna and fuse with the next cisterna to transport proteins between the cisternae. This vesicular transport model describes the Golgi apparatus as a relatively static structure with a unique enzyme composition in each cisterna. Molecules are transported in vesicles through the cisternae in a specific order, determining the modifications made to the substrates.

An experiment that used collagen rods in fibroblasts contradicted the vesicular transport model as collagens are too large to fit in the classical vesicles. This led to an alternative hypothesis, the Cisternal maturation model. According to this model, the Golgi apparatus is a dynamic structure where the cisternae move through the Golgi stack. The vesicles that arrive from the ER fuse with one another to become a vesicular tubular cluster that matures to become a cis-cisterna. Then, the cis-cisterna progressively matures to become a medial cisterna and subsequently trans-cisterna. As a new cis-cisterna continually forms and migrates, its enzyme composition changes. COPI-coated vesicles budding out of the mature cisternae carry the enzymes back to the newer cisterna, where they are functional. Thus, a newly formed cis-cisterna would receive resident enzymes primarily from the cisterna just ahead of it.

The two models described are not mutually exclusive. Experiments suggest that a stable core of long-lasting cisternae might exist in the center of each Golgi cisterna, and some vesicle-bound cargo moves forward rapidly. In contrast, other cargo moves forward more slowly, leading to the renewal of the Golgi apparatus through cisternal maturation. Thus, Golgi transport may involve a combination of mechanisms described in the two models.

Etiketler

Golgi ApparatusVesicular TransportCisternal MaturationProtein TransportEnzyme CompositionCOPI coated VesiclesCis cisternaMedial CisternaTrans cisternaFibroblastsCollagen Rods

Bölümden 17:

article

Now Playing

17.17 : Transport Across the Golgi

Hücre içi Membran Trafiği

3.7K Görüntüleme Sayısı

article

17.1 : Membran Trafiğine Giriş

Hücre içi Membran Trafiği

6.2K Görüntüleme Sayısı

article

17.2 : COP Kaplı Veziküller

Hücre içi Membran Trafiği

7.1K Görüntüleme Sayısı

article

17.3 : Clathrin Kaplı Veziküller

Hücre içi Membran Trafiği

6.2K Görüntüleme Sayısı

article

17.4 : Fosfoinositidler ve PIP'ler

Hücre içi Membran Trafiği

7.0K Görüntüleme Sayısı

article

17.5 : Ceket Montajı ve GTPazlar

Hücre içi Membran Trafiği

3.4K Görüntüleme Sayısı

article

17.6 : Kaplanmış Veziküllerin Sıkışması

Hücre içi Membran Trafiği

2.8K Görüntüleme Sayısı

article

17.7 : Rab Proteinleri

Hücre içi Membran Trafiği

3.7K Görüntüleme Sayısı

article

17.8 : Rab Çağlayanlar

Hücre içi Membran Trafiği

2.6K Görüntüleme Sayısı

article

17.9 : SNARE'ler ve Membran Füzyonu

Hücre içi Membran Trafiği

8.9K Görüntüleme Sayısı

article

17.10 : Veziküler Tübüler Kümeler

Hücre içi Membran Trafiği

2.2K Görüntüleme Sayısı

article

17.11 : ER Alma Yolu

Hücre içi Membran Trafiği

3.6K Görüntüleme Sayısı

article

17.12 : Golgi Aygıtı

Hücre içi Membran Trafiği

10.3K Görüntüleme Sayısı

article

17.13 : Protein Glikozilasyonu

Hücre içi Membran Trafiği

6.3K Görüntüleme Sayısı

article

17.14 : Proteoglikanlar

Hücre içi Membran Trafiği

3.8K Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır