S'identifier

While it is unclear how molecules move between adjacent Golgi cisternae, it is apparent that the molecules move from cis- cisterna, the entry face, to the trans- cisterna, the exit face. Experiments initially suggested vesicles that bud from one cisterna and fuse with the next cisterna to transport proteins between the cisternae. This vesicular transport model describes the Golgi apparatus as a relatively static structure with a unique enzyme composition in each cisterna. Molecules are transported in vesicles through the cisternae in a specific order, determining the modifications made to the substrates.

An experiment that used collagen rods in fibroblasts contradicted the vesicular transport model as collagens are too large to fit in the classical vesicles. This led to an alternative hypothesis, the Cisternal maturation model. According to this model, the Golgi apparatus is a dynamic structure where the cisternae move through the Golgi stack. The vesicles that arrive from the ER fuse with one another to become a vesicular tubular cluster that matures to become a cis-cisterna. Then, the cis-cisterna progressively matures to become a medial cisterna and subsequently trans-cisterna. As a new cis-cisterna continually forms and migrates, its enzyme composition changes. COPI-coated vesicles budding out of the mature cisternae carry the enzymes back to the newer cisterna, where they are functional. Thus, a newly formed cis-cisterna would receive resident enzymes primarily from the cisterna just ahead of it.

The two models described are not mutually exclusive. Experiments suggest that a stable core of long-lasting cisternae might exist in the center of each Golgi cisterna, and some vesicle-bound cargo moves forward rapidly. In contrast, other cargo moves forward more slowly, leading to the renewal of the Golgi apparatus through cisternal maturation. Thus, Golgi transport may involve a combination of mechanisms described in the two models.

Tags

Golgi ApparatusVesicular TransportCisternal MaturationProtein TransportEnzyme CompositionCOPI coated VesiclesCis cisternaMedial CisternaTrans cisternaFibroblastsCollagen Rods

Du chapitre 17:

article

Now Playing

17.17 : Transport Across the Golgi

Trafic des membranes intracellulaires

3.7K Vues

article

17.1 : Introduction au trafic membranaire

Trafic des membranes intracellulaires

6.2K Vues

article

17.2 : Vésicules à manteau protéique COP

Trafic des membranes intracellulaires

7.1K Vues

article

17.3 : Vésicules à clathrine

Trafic des membranes intracellulaires

6.2K Vues

article

17.4 : Phosphoinositides et PIPs

Trafic des membranes intracellulaires

7.0K Vues

article

17.5 : Assemblage du manteau et GTPases

Trafic des membranes intracellulaires

3.4K Vues

article

17.6 : Libération des vésicules à manteau

Trafic des membranes intracellulaires

2.8K Vues

article

17.7 : Protéines Rab

Trafic des membranes intracellulaires

3.7K Vues

article

17.8 : Cascades Rab

Trafic des membranes intracellulaires

2.6K Vues

article

17.9 : SNAREs et fusion membranaire

Trafic des membranes intracellulaires

8.9K Vues

article

17.10 : Le compartiment intermédiare RE-Golgi

Trafic des membranes intracellulaires

2.2K Vues

article

17.11 : Voie de récupération du réticulum endoplasmique

Trafic des membranes intracellulaires

3.6K Vues

article

17.12 : Appareil de Golgi

Trafic des membranes intracellulaires

10.3K Vues

article

17.13 : Glycosylation des protéines

Trafic des membranes intracellulaires

6.3K Vues

article

17.14 : Protéoglycanes

Trafic des membranes intracellulaires

3.8K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.