Consider a jib crane with an external load suspended from the pulley. The dimensions of the crane members are shown in the figure. A systematic analysis of the frame structure is required to determine the reaction forces at the pin joints, assuming that the pulleys are frictionless.

Figure 1

The system has two main structural components: a two-force member BD and a multi-force member ABC. The two-force member BD refers to a straight element subjected only to forces at its two ends, B and D, with no additional forces acting along its length. These forces are equal in magnitude but opposite in direction, resulting in the member being either in pure tension or compression. On the other hand, the multi-force member ABC is subjected to more than two forces distributed along its length. These forces may include external loads, reaction forces at pin joints, and the force exerted by the cable. Due to multiple forces acting on member ABC, it experiences a more complex stress distribution compared to the simpler two-force member BD.

Figure 2

Considering the lower pulley section, the load weight balances the tension in the cables resulting in an upward tension of 10 kN for each cable. Now, considering the upper pulley section, the tension T in the vertical cable is directed downwards, while it points towards joint A for the horizontal cable. The tension in the vertical cable is also 10 kN as it is part of the same continuous cable system.

In member DB, the force FBD can be resolved into its horizontal and vertical components using a slope triangle. The moment equilibrium condition at joint A gives FBD as 50 kN.

The horizontal force equilibrium condition can be applied to joint A.

Equation 1

Substituting the values of the length AB, AC, and radius of the pulley C, the force FBD is obtained as 50 kN.

The horizontal force equilibrium condition gives the reaction force at A as 40 kN.

Equation 2

Similarly, using the vertical force equilibrium condition, the vertical reaction force at A is estimated as -20 kN.

Equation 3

The force equilibrium conditions can be applied at joint D to obtain the horizontal and vertical reaction forces at D.

Equation 4

Equation 5

The obtained results indicate that the horizontal and vertical reaction forces at point D are -30 kN and 40 kN, respectively.

Etiketler
Jib CraneExternal LoadPulleyReaction ForcesPin JointsTwo force MemberMulti force MemberTensionCompressionStress DistributionLoad WeightTension CablesForce ComponentsMoment EquilibriumForce Equilibrium ConditionsHorizontal Reaction ForceVertical Reaction Force

Bölümden 6:

article

Now Playing

6.13 : Frames: Problem Solving I

Yapısal Analiz

331 Görüntüleme Sayısı

article

6.1 : Yapılara Giriş

Yapısal Analiz

870 Görüntüleme Sayısı

article

6.2 : Basit Kafes Kirişler

Yapısal Analiz

1.4K Görüntüleme Sayısı

article

6.3 : Eklem Yöntemi

Yapısal Analiz

611 Görüntüleme Sayısı

article

6.4 : Eklem Yöntemi: Problem Çözme I

Yapısal Analiz

903 Görüntüleme Sayısı

article

6.5 : Eklem Yöntemi: Problem Çözme II

Yapısal Analiz

419 Görüntüleme Sayısı

article

6.6 : Sıfır Kuvvet Üyesi

Yapısal Analiz

1.2K Görüntüleme Sayısı

article

6.7 : Bölümlerin Yöntemi

Yapısal Analiz

474 Görüntüleme Sayısı

article

6.8 : Bölümlerin Yöntemi: Problem Çözme I

Yapısal Analiz

406 Görüntüleme Sayısı

article

6.9 : Bölümlerin Yöntemi: Problem Çözme II

Yapısal Analiz

807 Görüntüleme Sayısı

article

6.10 : Uzay Makasları

Yapısal Analiz

684 Görüntüleme Sayısı

article

6.11 : Uzay Kafesleri: Problem Çözme

Yapısal Analiz

503 Görüntüleme Sayısı

article

6.12 : Çerçeve

Yapısal Analiz

458 Görüntüleme Sayısı

article

6.14 : Çerçeveler: Problem Çözme II

Yapısal Analiz

149 Görüntüleme Sayısı

article

6.15 : Makine

Yapısal Analiz

203 Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır