Oturum Aç

Centrifugation is a separation technique based on differences in density or size. It is commonly used to separate solids from aqueous interferents. During centrifugation, the sample is placed in centrifugation tubes and spun at high angular velocity, which allows centrifugal force to act differentially on the different densities or masses of the components. After spinning, the supernatant liquid is decanted. Depending on the specific application, either the pellet or the supernatant is retained for further purification. Sometimes, the supernatant is subjected to additional rounds of centrifugation and downstream processing.

In principle, centrifugation separates particles based on differences in size and density. Larger particles tend to be heavier and tend to sediment first. If particles are similar in size, denser particles tend to sediment first due to higher sedimentation rates. In practice, complex mixtures such as cell lysates may not yield distinctly separated particles despite differences in density or size. To address this issue, researchers have devised a variety of centrifugation techniques.

The simplest centrifugation technique is differential centrifugation. Here, the particles to be separated have similar densities, so larger particles will sediment at lower speeds. The speed is increased stepwise until the target particles are isolated.

A more sophisticated method is equilibrium density gradient centrifugation. In this technique, the analyte is placed in a solution with a preformed density gradient or a solution that forms a density gradient during centrifugation. Here, the density of the solution increases towards the bottom of the tube, so the sedimentation rate of each analyte component decreases as it moves toward the bottom. When a component's density equals that of the solution, the centrifugal force acting on it becomes zero, and sedimentation ceases. As a result, each component is isolated in a layer equal to its density.

Etiketler
CentrifugationSeparation TechniqueDensitySizeCentrifugal ForceSupernatantPelletPurificationDifferential CentrifugationEquilibrium Density Gradient CentrifugationSedimentation RatesCell LysatesDensity Gradient

Bölümden 4:

article

Now Playing

4.4 : Centrifugation

Introduction to Separation Methods

1.9K Görüntüleme Sayısı

article

4.1 : States of Matter and Phase Changes

Introduction to Separation Methods

830 Görüntüleme Sayısı

article

4.2 : Distillation: Vapor–Liquid Equilibria

Introduction to Separation Methods

2.5K Görüntüleme Sayısı

article

4.3 : Filtration

Introduction to Separation Methods

684 Görüntüleme Sayısı

article

4.5 : Sublimation

Introduction to Separation Methods

650 Görüntüleme Sayısı

article

4.6 : Recrystallization: Solid–Solution Equilibria

Introduction to Separation Methods

955 Görüntüleme Sayısı

article

4.7 : Crystal Growth: Principles of Crystallization

Introduction to Separation Methods

1.3K Görüntüleme Sayısı

article

4.8 : Precipitation and Co-precipitation

Introduction to Separation Methods

1.5K Görüntüleme Sayısı

article

4.9 : Coagulation

Introduction to Separation Methods

226 Görüntüleme Sayısı

article

4.10 : Electrodeposition

Introduction to Separation Methods

348 Görüntüleme Sayısı

article

4.11 : Extraction: Partition and Distribution Coefficients

Introduction to Separation Methods

1.4K Görüntüleme Sayısı

article

4.12 : Extraction: Effects of pH

Introduction to Separation Methods

304 Görüntüleme Sayısı

article

4.13 : Extraction: Advanced Methods

Introduction to Separation Methods

280 Görüntüleme Sayısı

article

4.14 : Chromatography: Introduction

Introduction to Separation Methods

2.5K Görüntüleme Sayısı

article

4.15 : Dialysis

Introduction to Separation Methods

506 Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır