Oturum Aç

Consider encountering a circuit in a steady state where all its inputs are sinusoidal, yet they do not all possess the same frequency. Such a circuit is not classified as an alternating current (AC) circuit, and consequently, its currents and voltages will not exhibit sinusoidal behavior. However, this circuit can be analyzed using the principle of superposition.

The principle of superposition stipulates that the output of a linear circuit with several concurrent inputs is equivalent to the cumulative outputs when each input operates independently. The inputs to the circuit are the voltages from the independent voltage sources and the currents from the independent current sources.

When all inputs except one are set to zero, the remaining inputs become 0-V voltage sources and 0-A current sources. Given that 0-V voltage sources equate to short circuits and 0-A current sources correspond to open circuits, the sources linked to the other inputs are replaced by open or short circuits. What remains is a steady-state circuit with a single sinusoidal input, which qualifies as an AC circuit and is analyzed using phasors and impedances.

Hence, the principle of superposition is employed to transform a circuit with multiple sinusoidal inputs at varying frequencies into several separate circuits, each with a singular sinusoidal input. Each of these AC circuits is then analyzed using phasors and impedances to determine its sinusoidal output. The aggregate of these sinusoidal outputs will coincide with the output of the initial circuit.

Etiketler
Superposition TheoremAC CircuitsSinusoidal InputsLinear Circuit AnalysisVoltage SourcesCurrent SourcesPhasorsImpedancesSteady state CircuitFrequency AnalysisCircuit TransformationSinusoidal Output

Bölümden 6:

article

Now Playing

6.14 : Superposition Theorem for AC Circuits

AC Circuit Analysis

517 Görüntüleme Sayısı

article

6.1 : Sinusoidal Sources

AC Circuit Analysis

335 Görüntüleme Sayısı

article

6.2 : Graphical and Analytic Representation of Sinusoids

AC Circuit Analysis

332 Görüntüleme Sayısı

article

6.3 : Phasors

AC Circuit Analysis

407 Görüntüleme Sayısı

article

6.4 : Phasor Arithmetics

AC Circuit Analysis

183 Görüntüleme Sayısı

article

6.5 : Phasor Relationships for Circuit Elements

AC Circuit Analysis

400 Görüntüleme Sayısı

article

6.6 : Kirchoff's Laws using Phasors

AC Circuit Analysis

315 Görüntüleme Sayısı

article

6.7 : Impedances and Admittance

AC Circuit Analysis

488 Görüntüleme Sayısı

article

6.8 : Impedance Combination

AC Circuit Analysis

253 Görüntüleme Sayısı

article

6.9 : Node Analysis for AC Circuits

AC Circuit Analysis

235 Görüntüleme Sayısı

article

6.10 : Mesh Analysis for AC Circuits

AC Circuit Analysis

294 Görüntüleme Sayısı

article

6.11 : Source Transformation for AC Circuits

AC Circuit Analysis

415 Görüntüleme Sayısı

article

6.12 : Thévenin Equivalent Circuits

AC Circuit Analysis

131 Görüntüleme Sayısı

article

6.13 : Norton Equivalent Circuits

AC Circuit Analysis

269 Görüntüleme Sayısı

article

6.15 : Op Amp AC Circuits

AC Circuit Analysis

128 Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır