JoVE Logo

Accedi

6.14 : Superposition Theorem for AC Circuits

Consider encountering a circuit in a steady state where all its inputs are sinusoidal, yet they do not all possess the same frequency. Such a circuit is not classified as an alternating current (AC) circuit, and consequently, its currents and voltages will not exhibit sinusoidal behavior. However, this circuit can be analyzed using the principle of superposition.

The principle of superposition stipulates that the output of a linear circuit with several concurrent inputs is equivalent to the cumulative outputs when each input operates independently. The inputs to the circuit are the voltages from the independent voltage sources and the currents from the independent current sources.

When all inputs except one are set to zero, the remaining inputs become 0-V voltage sources and 0-A current sources. Given that 0-V voltage sources equate to short circuits and 0-A current sources correspond to open circuits, the sources linked to the other inputs are replaced by open or short circuits. What remains is a steady-state circuit with a single sinusoidal input, which qualifies as an AC circuit and is analyzed using phasors and impedances.

Hence, the principle of superposition is employed to transform a circuit with multiple sinusoidal inputs at varying frequencies into several separate circuits, each with a singular sinusoidal input. Each of these AC circuits is then analyzed using phasors and impedances to determine its sinusoidal output. The aggregate of these sinusoidal outputs will coincide with the output of the initial circuit.

Tags

Superposition TheoremAC CircuitsSinusoidal InputsLinear Circuit AnalysisVoltage SourcesCurrent SourcesPhasorsImpedancesSteady state CircuitFrequency AnalysisCircuit TransformationSinusoidal Output

Dal capitolo 6:

article

Now Playing

6.14 : Superposition Theorem for AC Circuits

AC Circuit Analysis

618 Visualizzazioni

article

6.1 : Sinusoidal Sources

AC Circuit Analysis

474 Visualizzazioni

article

6.2 : Graphical and Analytic Representation of Sinusoids

AC Circuit Analysis

372 Visualizzazioni

article

6.3 : Phasors

AC Circuit Analysis

489 Visualizzazioni

article

6.4 : Phasor Arithmetics

AC Circuit Analysis

243 Visualizzazioni

article

6.5 : Phasor Relationships for Circuit Elements

AC Circuit Analysis

498 Visualizzazioni

article

6.6 : Kirchoff's Laws using Phasors

AC Circuit Analysis

390 Visualizzazioni

article

6.7 : Impedances and Admittance

AC Circuit Analysis

637 Visualizzazioni

article

6.8 : Impedance Combination

AC Circuit Analysis

395 Visualizzazioni

article

6.9 : Node Analysis for AC Circuits

AC Circuit Analysis

289 Visualizzazioni

article

6.10 : Mesh Analysis for AC Circuits

AC Circuit Analysis

340 Visualizzazioni

article

6.11 : Source Transformation for AC Circuits

AC Circuit Analysis

532 Visualizzazioni

article

6.12 : Thévenin Equivalent Circuits

AC Circuit Analysis

252 Visualizzazioni

article

6.13 : Norton Equivalent Circuits

AC Circuit Analysis

343 Visualizzazioni

article

6.15 : Op Amp AC Circuits

AC Circuit Analysis

187 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati