Drug design is a dynamic field that involves discovering and developing new medications based on specific biological targets. This process heavily relies on structure-activity relationships (SAR) and quantitative structure-activity relationships (QSAR) to guide the design and optimization of efficient drugs.

SAR studies the intricate relationship between a drug's chemical structure and biological activity. It focuses on understanding how modifications to a drug's structure can influence its affinity, efficacy, and potency.

On the other hand, QSAR utilizes mathematical models and computational techniques to establish correlations between a drug's chemical structure and biological activity. This approach enables researchers to predict and optimize the properties and activities of potential drug candidates.

One notable application of SAR lies in developing β-blockers, commonly used as antihypertensive agents. Nonselective β1 and β2 adrenergic receptor blockers were developed in their early stages. However, these drugs often lead to unwanted side effects such as bradycardia, peripheral vasoconstriction, and bronchoconstriction.

Through thorough SAR analysis, researchers enhanced β1 receptor selectivity, developing drugs like metoprolol. Metoprolol is a selective β1 blocker with fewer side effects than its predecessors. This targeted modification significantly improved the clinical utility and safety profile of β-blockers.

SAR and QSAR approaches in drug design have revolutionized the pharmaceutical industry. These techniques provide valuable insights into the relationships between drug structure and biological activity, allowing for rational drug design, optimization of pharmacological properties, and identification of potential drug candidates.

By employing a systematic and scientific approach, researchers can create medications that are safer, more effective, and tailored to specific biological targets. Ultimately, drug design is crucial in advancing healthcare by providing innovative treatments that improve patient outcomes and quality of life.

Bölümden 1:

article

Now Playing

1.10 : Structure-Activity Relationships and Drug Design

Pharmacokinetics and Pharmacodynamics: Introduction

239 Görüntüleme Sayısı

article

1.1 : Biyofarmasötik ve Farmakokinetik: Genel Bakış

Pharmacokinetics and Pharmacodynamics: Introduction

1.4K Görüntüleme Sayısı

article

1.2 : Farmakokinetik Modeller: Genel Bakış

Pharmacokinetics and Pharmacodynamics: Introduction

390 Görüntüleme Sayısı

article

1.3 : İlaç konsantrasyonuna karşı zaman korelasyonu

Pharmacokinetics and Pharmacodynamics: Introduction

424 Görüntüleme Sayısı

article

1.4 : İlaç Konsantrasyonları: Ölçümler

Pharmacokinetics and Pharmacodynamics: Introduction

215 Görüntüleme Sayısı

article

1.5 : Farmakokinetikte Temel Matematiksel Prensipler: Kalkülüs ve Grafikler

Pharmacokinetics and Pharmacodynamics: Introduction

442 Görüntüleme Sayısı

article

1.6 : Farmakokinetikte Temel Matematiksel Prensipler: Matematiksel İfadeler ve Birimler

Pharmacokinetics and Pharmacodynamics: Introduction

202 Görüntüleme Sayısı

article

1.7 : Farmakokinetikte Temel Matematiksel İlkeler: Reaksiyon Hızı ve Sırası

Pharmacokinetics and Pharmacodynamics: Introduction

155 Görüntüleme Sayısı

article

1.8 : Popülasyon Farmakokinetik Verilerinin Analizi

Pharmacokinetics and Pharmacodynamics: Introduction

161 Görüntüleme Sayısı

article

1.9 : Farmakodinamik: Genel Bakış ve İlkeler

Pharmacokinetics and Pharmacodynamics: Introduction

491 Görüntüleme Sayısı

article

1.11 : Agonizma ve Antagonizma: Niceleme

Pharmacokinetics and Pharmacodynamics: Introduction

199 Görüntüleme Sayısı

article

1.12 : Uyuşturucu Kontrol Yönetişimi: Düzenleyici Kurumlar ve Etkileri

Pharmacokinetics and Pharmacodynamics: Introduction

86 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır