JoVE Logo

Oturum Aç

Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.

Bu Makalede

  • Özet
  • Özet
  • Giriş
  • Protokol
  • Sonuçlar
  • Tartışmalar
  • Açıklamalar
  • Teşekkürler
  • Malzemeler
  • Referanslar
  • Yeniden Basımlar ve İzinler

Özet

We describe the fabrication of micropatterned hydrogel sheets using a simple process, which can be assembled and manipulated in a freestanding form. Using these modular hydrogel sheets, a simple macro-scaled 3D cell culture system can be generated with a controlled cellular microenvironment.

Özet

Hidrojeller, bir in vivo benzeri üç boyutlu (3D), doku yapısının sağlanması için mikro-akışkan veya micropatterning teknolojileri kullanılarak mikro ölçekte desenli olabilir. Elde edilen 3D hidrojel-bazlı hücresel yapılar gelişmiş biyolojik çalışmalar, farmakolojik tahliller ve organ nakli uygulamaları için hayvan deneylerinde alternatif olarak sunulmuştur. Hidrojel-bazlı partiküller ve elyaflar, kolayca imal edilebilir, ancak, bu doku onarımı için bunları işlemek oldukça zordur. Bu videoda, biz kontrollü hücresel mikroçevresinin ile makro ölçekli 3D hücre kültürü sistemi oluşturmak için kendi montaj ile birlikte, micropatterned aljinat hidrojel sayfaları için bir fabrikasyon yöntem açıklanmaktadır. 200 um ve hassas micropatterns ile - kalsiyum jelleştirme maddesinin bir sis formu, ince hidrojel levha kolayca 100 aralığı içinde bir kalınlığa sahip olarak oluşturulur. Hücreler daha sonra hidrojel yaprak geometrik rehberlik ile kültüre edilebilirduran koşullar. Ayrıca, hidrojel levha hali hazırda bir uç kesim ucu ile bir mikropipet kullanılarak manipüle edilebilir ve desenli bir polidimetilsiloksan (PDMS) kare kullanarak istifleme tarafından çok tabakalı yapılar halinde monte edilebilir. , Basit bir işlem kullanılarak imal edilebilir Bu modüler hidrojel levha, mikro ve makro ve doku yeniden üzerindeki fonksiyonel çalışmalarda da dahil olmak üzere in vitro ilaç deneylerinde ve biyolojik çalışmalar, potansiyel uygulamaya sahiptir.

Giriş

Hidrojeller özellikle biyomalzemeler umut vericidir, ve temel biyoloji, farmakolojik deneyleri ve tıpta önemli olması beklenmektedir. 1 hidrojel tabanlı hücresel yapıları Biofabrication hayvan deneyleri kullanımını azaltmak için ileri sürülmüştür, 2,3, 4 transplante dokuların yerini ve geliştirmek Hücre bazlı deneyler. 5,6 su-ihtiva eden (hidro) viskoelâstik malzemelerin (jeller), hücrelerin geniş bir sayısı kapsüllenmiş ve 3B, hücresel mikro-kontrol etmek için bir iskele yapısı içinde muhafaza edilmesini sağlar. Mikroakışkan ya micropatterning teknolojileri yönlendirmesi ile birlikte, hidrojel yapıları geometrisi kesin hücresel ölçekte kontrol edilebilir. Tarih, parçacıkların dahil hidrojellerin şekiller, çeşitli, 7-9 lifler, 10-12 ve levhalar, 13-15 aşağıdan yukarıya beğenme yapı birimi olarak kullanılmıştırMakro ölçekli çok hücreli mimarilerinin imalat için ağrıyor.

Hidrojel-bazlı partiküller ve elyaflar Hem mikroakışkan cihazlar kullanılarak akışkan kontrol grubu ile, mikro ölçekli hücre ortamları gibi uygulamalar için kolaylıkla ve hızlı bir şekilde imal olmuştur. Bununla birlikte, mühendislik dokuların temel birimleri olarak, onları yeniden düzenlemek ve makro ölçekli yapıları olarak hacmini büyütmek için. 16 mikron büyüklüğünde temel modülleri üretmek için daha Makro ölçekli yapıları elde etmek daha zordur karmaşık olacaktır. Hidrojel-bazlı yapıların Levha benzeri birimler basit bir montaj işlemi ile iskeleler hacmini artırmak için de kullanılabilir. Neticesinde, hidrojel levha istiflenmiş katmanları bir hacimsel artış, aynı zamanda 3D uzayda geometrik uzantısı sadece sağlar.

Çoklu yumurtlama içine montajı ile birlikte 15 - Daha önce, 13 micropatterned hidrojel tabakaları imal edilmesi için bir yöntem bildirmiştirola- rak hücresel mimarileri. Teknik, çok katmanlı yapıların istifleme işlemi yoluyla karmaşık micropatterning ve hücresel yapıları modüler tasarımı sağlar. Micropatterned edilir istiflenmiş modüler hidrojel levha, imalatı ile, kontrollü bir makro-ölçekte, hücresel mikro-3 boyutlu bir hücre kültür sistemi gerçekleştirilebilir. Bu video protokol insan karaciğer karsinoma hücre hattında (HepG2) göre modüler hidrojel tabakaları oluşturmak için kullanılabilen basit ama güçlü bir üretim yöntemi açıklanmaktadır. Bu tarifnamede, basit olan bu desenli modüler hidrojel tabakaların manipülasyonu ve bir çok-tabakalı yapı halinde asamblajı göstermektedir.

Access restricted. Please log in or start a trial to view this content.

Protokol

   1. Preparation of the Micropatterned Molds and Hydrogels

  1. Produce the desired micro-scale patterns using SU-8 photoresist on the surface of a silicon wafer via a standard two-step photolithography technique15,17 for casting PDMS molds. The example shown uses a liver lobule-like mesh pattern (Figure 1).
  2. Weigh out PDMS and a curing agent solution with a ratio of 1:5 (i.e., 12.5 g of PDMS and 2.5 g of curing agent).
  3. Mix the 15 g of the solution thoroughly, degas the bubbles in a vacuum chamber, and then spread the mixed solution onto a micropatterned surface of the silicon wafer evenly within a foil casting dish.
  4. Place the silicon wafer onto a 65 °C heated plate for 90 min on a flat surface to cure the PDMS.
  5. Remove the cured PDMS from the casting dish and the silicon wafer.
  6. Cut the edges of the PDMS and place it onto a 100-mm-diameter petri dish with the micropatterned side up.
  7. Wash the micropatterned cured PDMS on the petri dish using 70% ethanol and distilled water for primary sterilization. Then, dry them completely for 10 min in an oven at 65 °C.
  8. Dissolve and mix O/N 3 g of a powdered nonionic surfactant in 100 ml of distilled water, creating a 3% (w/v) coating solution.
  9. Place the micropatterned PDMS molds in a plasma cleaner and clean them for 1 min (85 W, 0.73 mbar) to create a hydrophilic surface, to facilitate the addition of aqueous liquids. Then, coat the surface of the PDMS with the 100 ml surfactant solution for at least 3 hr (orO/N) using a laboratory rocker.
  10. Wash the surfactant solution from the PDMS molds and dry them completely in an oven at 65 °C for 10 min. Then, sterilize each micropatterned mold by exposure to ultraviolet (UV) radiation over 30 min.

2. Prepare the Cell Suspension in a Hydrogel Precursor

  1. To prepare hydrogel precursor, dissolve 0.1 g of sodium alginate powder in 10 ml of phosphate buffered saline (PBS), creating a 1% (w/v) alginate precursor. To dissolve the powder completely, incubate and mix them O/N.
  2. Filter the solution through a 0.22 µm filter connected to a 1 ml syringe.
  3. Culture the HepG2 cells in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin on a conventional tissue culture dish until 70% - 80% confluence in a 5% CO2 humidified incubator at 37 °C.
  4. Wash the cells once using PBS, and then trypsinize them by adding 1 ml of 0.05% trypsin-EDTA for 4 min in a 5% CO2 humidified incubator at 37 °C. Centrifuge the cells harvested from the culture dish at 250 x g for 3 min and resuspend using 1 ml of PBS following removal of the supernatant.
  5. Count the number of single distributed cells in PBS using an automated cell counter.
  6. Following centrifugation at 250 x g for 3 min and PBS removal, add 1 ml of the 1% (w/v) of sodium alginate solution to the remaining cell pellet and mix them gently using pipetting. The final seeding density of the cells should be 5 x 10- 107 cells/ml. Incubate the cell/hydrogel suspension in a 5% CO2 humidified incubator at 37 °C.

3. Loading and Cross-linking of Cell/Hydrogel Suspension

  1. Dissolve 1.47 g of calcium chloride dehydrate in 100 ml of ddH2O to produce a cross-linking reagent (i.e., 100 mM CaCl2·2H2O in ddH2O).
  2. Rinse out the interior of a humidifier with ultrasonic transducer using 70% ethanol, and fill it with 200 ml of cross-linking reagent. The humidifier is 110 mm wide, 300 mm long and 170 mm deep (i.e., 110 mm x 300 mm x 170 mm (W x H x D)).
  3. Place the micropatterned PDMS molds in a plasma cleaner and clean them for 1 min at 85 W to create a hydrophilic surface.
  4. Steadily load 7.2 µl of the well-mixed cell/hydrogel suspension at the edge of the micropattern in the mold. The example shown uses a liver lobule-like mesh pattern (Figure 1). The volume of the suspension depends on the topographic pattern.
  5. To achieve gelation of the cell/hydrogel suspension, turn on the humidifier and verify that the humidifier produces a mist of the cross-linking reagent. Spray the cross-linking reagent onto the hydrogel precursor for 5 min, covering the topographic surface of the PDMS molds within a range of 5 cm.
    Note: Distances longer and shorter than 5 cm could cause incomplete and uneven gelation, respectively. Ensure that the humidifier has a spraying rate of 250 ml/hr, producing 20 ml of mist of the cross-linking reagent in 5 min.
  6. Following the cross-linking process, turn off the humidifier and fill the PDMS molds with PBS.

4. Handling of Single Modular Hydrogel Sheets

  1. Detach each hardened hydrogel sheet from the micropatterned molds via pipetting PBS gently around the hydrogel sheet using a 200 µl pipette tip.
  2. Pick up each floating hydrogel sheet using an end-cut 1,000 µl pipette tip end. Each liver lobule-like mesh hydrogel sheet has dimensions of 8 mm x 8.7 mm, and be 100 - 200 µm thick.
  3. Transfer a single layer of the hydrogel sheet into 1 ml of DMEM in a 12-well plate, and culture the cells in vitro in a floating manner using the hydrogel construct as a unit component in the 12-well plate over a week in a 5% CO2 humidified incubator at 37 °C. Exchange the culture medium every other day.

5. Assembly of Multi-layered Hydrogel Sheets

  1. Repeat steps 1.1 to 1.5 to produce a PDMS frame with dimensions of 18 mm x 18 mm x 4 mm (W x H x D), and which contains 170-µm-high pillar structures at the lower surface. Use 42 g of the mixture of PDMS and curing agent, with the same ratio as in step 1.2. Place a specialized polycarbonate mold on the silicon wafer for the PDMS frame to create an interior frame with dimensions of 8 mm x 9 mm x 2 mm (W x H x D).
  2. Sterilize the PDMS frame and 180-µm-pore nylon filter papers submerged in distilled water and tweezers in an autoclave for 15 min at 121 °C.
  3. Place the sterilized PDMS frame onto a quarter of a piece of nylon filter paper (with a diameter of 5 cm) in a 60-mm diameter petri dish.
  4. Transfer a modular hydrogel sheet into the interior of the PDMS frame using an end-cut 1,000 µl pipette tip. The hydrogel sheets used for assembly should be cultured for at least a day after they were fabricated.
  5. Align the edge of each modular hydrogel sheet with the PDMS frame using an empty 200 µl pipette tip.
  6. Repeat steps 5.4 and 5.5 using modular hydrogel sheets to form a stack of 4 - 6 layers.
  7. Remove the culture medium by flowing it out through the pillar structures at the bottom of the PDMS frame. Then add 2 µl of alginate solution (2% w/v) at a corner of the multi-layer construct.
  8. Spray a mist of the cross-linking reagent for 30 sec onto the multi-layer construct to attach the edges of each layer with those of another. Use 2 ml of mist of the cross-linking reagent (at a spraying rate of 250 ml/hr).
  9. Rinse the multi-layered construct gently with 400 µl DMEM and remove the PDMS frame using tweezers.
  10. Detach the multi-layered construct from the filter paper by gently wiping with a cell lifter following the addition of 4 ml of DMEM.
  11. Transfer the multi-layered construct to a 6-well plate containing 3 ml of DMEM using filter paper, and culture the cells in vitro in a floating manner, with the hydrogel construct as a multi-scale cellular scaffold in the 6-well plate over a week in a 5% CO2 humidified incubator at 37 °C. Exchange the culture medium every other day.

Access restricted. Please log in or start a trial to view this content.

Sonuçlar

We have described the fabrication and manipulation of freestanding cellular hydrogel sheets. As shown in Figure 1, we fabricated micropatterned PDMS molds, and cell-containing hydrogel was loaded onto the hydrophilic surface of these molds and cross-linked using a humidifier to generate an aerosolized mist of gelling agent. Following release from the molds, HepG2 cells were cultured in freestanding hydrogel sheets with various patterns (Figure 2). Thus, t...

Access restricted. Please log in or start a trial to view this content.

Tartışmalar

This protocol provides a simple method of fabricating modular hydrogel sheets, and assembling them to form 3D cellular scaffolds.

To construct clear-cut patterned alginate structures in a short time, we should identify a cross-linking process that can create sufficiently rigid structures to maintain the complex micropatterns from the mold, as well as maintain cell viability and metabolism. We have developed a cross-linking process, including a sol–gel transition, to spray a cross-linking...

Access restricted. Please log in or start a trial to view this content.

Açıklamalar

The authors have nothing to disclose.

Teşekkürler

This research was supported by a National Leading Research Laboratory Program (Grant NRF-2013R1A2A1A05006378) through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning. The authors also acknowledge a KAIST Systems Healthcare Program.

Access restricted. Please log in or start a trial to view this content.

Malzemeler

NameCompanyCatalog NumberComments
Sylgard 184 Silicone Elastomer KitDow Corning Corporation000000000001064291
Pluronic F-127Sigma-AldrichP2443Powdered nonionic surfactant 
Alginic acid sodium salt, low viscosityAlfa AesarB25266
Calcium chloride dihydrateSigma-AldrichC7902
Ultrasonic humidifierMediHeimMH-2800Modified equipment, Maximum sprayed rate: 250 ml/hr
Nylon net filter hydrofilic, 180 μmEMD MilliporeNY8H04700
Polycarbonate moldCustomized mold for fabrication of a PDMS frame pattern

Referanslar

  1. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64 (Supplement), 18-23 (2012).
  2. Lan, S., Starly, B. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities. Toxicol. Appl. Pharm. 256 (1), 62-72 (2011).
  3. Szot, C. S., Buchanan, C. F., Freeman, J. W., Rylander, M. N. 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials. 32 (31), 7905-7912 (2011).
  4. Lim, F., Sun, A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science. 210 (4472), 908-910 (1980).
  5. Koh, W. G., Itle, L. J., Pishko, M. V. Molding of hydrogel microstructures to create multiphenotype cell microarrays. Anal. Chem. 75 (21), 5783-5789 (2003).
  6. Xu, Y., et al. A Microfluidic Hydrogel Capable of Cell Preservation without Perfusion Culture under Cell-Based Assay Conditions. Adv Mater. 22 (28), 3017-3021 (2010).
  7. Um, E., Lee, D. S., Pyo, H. S., Park, J. K. Continuous generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel. Microfluid. Nanofluid. 5 (4), 541-549 (2008).
  8. Lee, D. H., Lee, W., E, U. m, Park, J. K. Microbridge structures for uniform interval control of flowing droplets in microfluidic networks. Biomicrofluidics. 5 (3), 034117(2011).
  9. Lee, D. H., Bae , C. Y., Han, J. I., Park, J. K. In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules. Anal. Chem. 85 (18), 8749-8756 (2013).
  10. Yamada, M., Sugaya, S., Naganuma, Y., Seki, M. Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter. 8 (11), 3122-3130 (2012).
  11. Yamada, M., et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials. 33 (33), 8304-8315 (2012).
  12. Onoe, H., et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12 (6), 584-590 (2013).
  13. Lee, W., Son, J., Yoo, S. S., Park, J. K. Facile and Biocompatible Fabrication of Chemically Sol−Gel Transitional Hydrogel Free-Standing Microarchitectures. 12 (1), 14-18 (2011).
  14. Lee, W., et al. Cellular hydrogel biopaper for patterned 3D cell culture and modular tissue reconstruction. Adv. Healthcare Mater. 1 (5), 635-639 (2012).
  15. Bae, C. Y., Min, M. K., Kim, H., Park, J. K. Geometric effect of the hydrogel grid structure on in vitro formation of homogeneous MIN6 cell clusters. Lab Chip. 14 (13), 2183-2190 (2014).
  16. Bruzewicz, D. A., McGuigan, A. P., Whitesides, G. M. Fabrication of a modular tissue construct in a microfluidic chip. Lab Chip. 8 (5), 663-671 (2008).
  17. Choi, S., Park, J. K. Two-step photolithography to fabricate multilevel microchannels. Biomicrofluidics. 4 (4), 046503(2010).
  18. Lee, B. R., et al. In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials. 33 (3), 837-845 (2012).
  19. Cabodi, M., Choi, N. W., Gleghorn, J. P., Lee, C. S., Bonassar, L. J., Stroock, A. D. A microfluidic biomaterial. J. Am. Chem. Soc. 127 (40), 13788-13789 (2005).
  20. Choi, N. W., Cabodi, M., Held, B., Gleghorn, J. P., Bonassar, L. J., Stroock, A. D. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6 (11), 908-915 (2007).
  21. Rowley, J. A., Madlambayan, G., Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 20 (1), 45-53 (1999).

Access restricted. Please log in or start a trial to view this content.

Yeniden Basımlar ve İzinler

Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi

Izin talebi

Daha Fazla Makale Keşfet

3D Cell CultureModular Hydrogel SheetsMicropatterned 3D Cellular ArchitectureTissue EngineeringIn Vitro Cell based AssaysPDMSPhotolithographyHydrophilic SurfaceSurfactant Solution

This article has been published

Video Coming Soon

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır