Sign In

16.1 : Common Ion Effect

Compared with pure water, the solubility of an ionic compound is less in aqueous solutions containing a common ion (one also produced by dissolution of the ionic compound). This is an example of a phenomenon known as the common ion effect, which is a consequence of the law of mass action that may be explained using Le Châtelier’s principle. Consider the dissolution of silver iodide:

Eq1

This solubility equilibrium may be shifted left by the addition of either silver(I) or iodide ions, resulting in the precipitation of AgI and lowered concentrations of dissolved Ag+ and I. In solutions that already contain either of these ions, less AgI may be dissolved than in solutions without these ions.

This effect may also be explained in terms of mass action as represented in the solubility product expression:

Eq1

The mathematical product of silver(I) and iodide ion molarities is constant in an equilibrium mixture regardless of the source of the ions, and so an increase in one ion’s concentration must be balanced by a proportional decrease in the other.

Common Ion Effect on Solubility

The common ion affects the solubility of the compound in a solution. For example, solid Mg(OH)2 dissociate into Mg2+ and OH ions as follows;

Eq1

If MgCl2 is added to a saturated solution of Mg(OH)2, the reaction shifts to the left to relieve the stress produced by the additional Mg2+ ion, in accordance with Le Châtelier’s principle. In quantitative terms, the added Mg2+ causes the reaction quotient to be larger than the solubility product (Q > Ksp), and Mg(OH)2 forms until the reaction quotient again equals Ksp. At the new equilibrium, [OH] is less and [Mg2+] is greater than in the solution of Mg(OH)2 in pure water.

If KOH is added to a saturated solution of Mg(OH)2, the reaction shifts to the left to relieve the stress of the additional OH ion. Mg(OH)2 forms until the reaction quotient again equals Ksp. At the new equilibrium, [OH] is greater and [Mg2+] is less than in the solution of Mg(OH)2 in pure water.

This text is adapted from Openstax, Chemistry 2e, Section 15.1: Precipitation and Dissolution.

Tags
Common Ion EffectAcetic AcidSodium AcetateAcetate IonEquilibriumShift To The LeftDecreased DissociationLe Ch telier s PrincipleReactantsProductsCounterbalancePHAmmonia SolutionAmmonium ChlorideBase Dissociation ConstantICE TableHydroxide IonsKb

From Chapter 16:

article

Now Playing

16.1 : Common Ion Effect

Acid-base and Solubility Equilibria

37.9K Views

article

16.2 : Buffers

Acid-base and Solubility Equilibria

156.9K Views

article

16.3 : Henderson-Hasselbalch Equation

Acid-base and Solubility Equilibria

62.8K Views

article

16.4 : Calculating pH Changes in a Buffer Solution

Acid-base and Solubility Equilibria

48.9K Views

article

16.5 : Buffer Effectiveness

Acid-base and Solubility Equilibria

44.8K Views

article

16.6 : Titration Calculations: Strong Acid - Strong Base

Acid-base and Solubility Equilibria

26.9K Views

article

16.7 : Titration Calculations: Weak Acid - Strong Base

Acid-base and Solubility Equilibria

39.0K Views

article

16.8 : Indicators

Acid-base and Solubility Equilibria

44.9K Views

article

16.9 : Titration of a Polyprotic Acid

Acid-base and Solubility Equilibria

90.3K Views

article

16.10 : Solubility Equilibria

Acid-base and Solubility Equilibria

45.3K Views

article

16.11 : Factors Affecting Solubility

Acid-base and Solubility Equilibria

31.0K Views

article

16.12 : Formation of Complex Ions

Acid-base and Solubility Equilibria

21.4K Views

article

16.13 : Precipitation of Ions

Acid-base and Solubility Equilibria

25.8K Views

article

16.14 : Qualitative Analysis

Acid-base and Solubility Equilibria

13.3K Views

article

16.15 : Acid-Base Titration Curves

Acid-base and Solubility Equilibria

118.6K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved