The ionization-constant expression for a solution of a weak acid can be written as:
Rearranging to solve for [H3O+] yields:
Taking the negative logarithm of both sides of this equation gives
which can be written as
where pKa is the negative of the logarithm of the ionization constant of the weak acid (pKa = −log Ka). This equation relates the pH, the ionization constant of a weak acid, and the concentrations of the weak conjugate acid-base pair in a buffered solution. Scientists often use this expression, called the Henderson-Hasselbalch equation, to calculate the pH of buffer solutions. It is important to note that the “x is small” assumption must be valid to use this equation.
Lawrence Joseph Henderson and Karl Albert Hasselbalch
Lawrence Joseph Henderson (1878–1942) was an American physician, biochemist and physiologist, to name only a few of his many pursuits. He obtained a medical degree from Harvard and then spent 2 years studying in Strasbourg, then a part of Germany, before returning to take a lecturer position at Harvard. He eventually became a professor at Harvard and worked there his entire life. He discovered that the acid-base balance in human blood is regulated by a buffer system formed by the dissolved carbon dioxide in blood. He wrote an equation in 1908 to describe the carbonic acid-carbonate buffer system in blood. Henderson was broadly knowledgeable; in addition to his important research on the physiology of blood, he also wrote on the adaptations of organisms and their fit with their environments, on sociology and on university education. He also founded the Fatigue Laboratory at the Harvard Business School, which examined human physiology with a specific focus on work in industry, exercise, and nutrition.
In 1916, Karl Albert Hasselbalch (1874–1962), a Danish physician and chemist, shared authorship in a paper with Christian Bohr in 1904 that described the Bohr effect, which showed that the ability of hemoglobin in the blood to bind with oxygen was inversely related to the acidity of the blood and the concentration of carbon dioxide. The pH scale was introduced in 1909 by another Dane, Sørensen, and in 1912, Hasselbalch published measurements of the pH of blood. In 1916, Hasselbalch expressed Henderson’s equation in logarithmic terms, consistent with the logarithmic scale of pH, and thus the Henderson-Hasselbalch equation was born.
This text is adapted from Openstax, Chemistry 2e, Section 14.6: Buffers.
From Chapter 16:
Now Playing
Acid-base and Solubility Equilibria
62.8K Views
Acid-base and Solubility Equilibria
37.9K Views
Acid-base and Solubility Equilibria
156.9K Views
Acid-base and Solubility Equilibria
48.9K Views
Acid-base and Solubility Equilibria
44.8K Views
Acid-base and Solubility Equilibria
26.9K Views
Acid-base and Solubility Equilibria
39.0K Views
Acid-base and Solubility Equilibria
44.9K Views
Acid-base and Solubility Equilibria
90.3K Views
Acid-base and Solubility Equilibria
45.3K Views
Acid-base and Solubility Equilibria
31.0K Views
Acid-base and Solubility Equilibria
21.4K Views
Acid-base and Solubility Equilibria
25.8K Views
Acid-base and Solubility Equilibria
13.3K Views
Acid-base and Solubility Equilibria
118.6K Views
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved