Sign In

16.8 : Indicators

Certain organic substances change color in dilute solution when the hydronium ion concentration reaches a particular value. For example, phenolphthalein is a colorless substance in any aqueous solution with a hydronium ion concentration greater than 5.0 × 10−9 M (pH < 8.3). In more basic solutions where the hydronium ion concentration is less than 5.0 × 10−9 M (pH > 8.3), it is red or pink. Substances such as phenolphthalein, which can be used to determine the pH of a solution, are called acid-base indicators. Acid-base indicators are either weak organic acids or weak organic bases.

The equilibrium in a solution of the acid-base indicator methyl orange, a weak acid, can be represented by an equation in which we use HIn as a simple representation for the complex methyl orange molecule:

Eq1

The anion of methyl orange, In, is yellow, and the nonionized form, HIn, is red. When we add acid to a solution of methyl orange, the increased hydronium ion concentration shifts the equilibrium toward the nonionized red form, in accordance with Le Châtelier’s principle. If we add base, we shift the equilibrium towards the yellow form. This behavior is completely analogous to the action of buffers.

The perceived color of an indicator solution is determined by the ratio of the concentrations of the two species In and HIn. If most of the indicator (typically about 60−90% or more) is present as In, the perceived color of the solution is yellow. If most is present as HIn, then the solution color appears red. The Henderson-Hasselbalch equation is useful for understanding the relationship between the pH of an indicator solution and its composition (thus, perceived color):

Eq1

In solutions where pH > pKa, the logarithmic term must be positive, indicating an excess of the conjugate base form of the indicator (yellow solution). When pH > pKa, the log term must be negative, indicating an excess of the conjugate acid (red solution). When the solution pH is close to the indicator pKa, appreciable amounts of both conjugate partners are present, and the solution color is that of an additive combination of each (yellow and red, yielding orange). The color change interval (or pH interval) for an acid-base indicator is defined as the range of pH values over which a change in color is observed, and for most indicators this range is approximately pKa ± 1.

There are many different acid-base indicators that cover a wide range of pH values and can be used to determine the approximate pH of an unknown solution by process of elimination. Universal indicators and pH paper contain a mixture of indicators and exhibit different colors at different pHs.

This text is adapted from Openstax, Chemistry 2e, Section 14.7: Acid-Base Titrations.

Tags
PH IndicatorColor ChangeMonitor PHSolutionWeak AcidHInConjugate BaseIn IonPKaHydronium ConcentrationEquilibriumBaseTitrationEndpointEquivalence PointTitration CurveStrong AcidStrong BasePhenolphthaleinMethyl Red

From Chapter 16:

article

Now Playing

16.8 : Indicators

Acid-base and Solubility Equilibria

44.9K Views

article

16.1 : Common Ion Effect

Acid-base and Solubility Equilibria

37.9K Views

article

16.2 : Buffers

Acid-base and Solubility Equilibria

156.9K Views

article

16.3 : Henderson-Hasselbalch Equation

Acid-base and Solubility Equilibria

62.8K Views

article

16.4 : Calculating pH Changes in a Buffer Solution

Acid-base and Solubility Equilibria

48.9K Views

article

16.5 : Buffer Effectiveness

Acid-base and Solubility Equilibria

44.8K Views

article

16.6 : Titration Calculations: Strong Acid - Strong Base

Acid-base and Solubility Equilibria

26.9K Views

article

16.7 : Titration Calculations: Weak Acid - Strong Base

Acid-base and Solubility Equilibria

39.0K Views

article

16.9 : Titration of a Polyprotic Acid

Acid-base and Solubility Equilibria

90.3K Views

article

16.10 : Solubility Equilibria

Acid-base and Solubility Equilibria

45.3K Views

article

16.11 : Factors Affecting Solubility

Acid-base and Solubility Equilibria

31.0K Views

article

16.12 : Formation of Complex Ions

Acid-base and Solubility Equilibria

21.4K Views

article

16.13 : Precipitation of Ions

Acid-base and Solubility Equilibria

25.8K Views

article

16.14 : Qualitative Analysis

Acid-base and Solubility Equilibria

13.3K Views

article

16.15 : Acid-Base Titration Curves

Acid-base and Solubility Equilibria

118.6K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved