Sign In

16.14 : Qualitative Analysis

For solutions containing mixtures of different cations, the identity of each cation can be determined by qualitative analysis. This technique involves a series of selective precipitations with different chemical reagents, each reaction producing a characteristic precipitate for a specific group of cations. Metal ions within a group are further separated by varying the pH, heating the mixture to redissolve a precipitate, or adding other reagents to form complex ions.

For instance, group IV cations, which consist of insoluble carbonates and phosphatases such as Ba2+, Ca2+, and Mg2+, all form white precipitates in the presence of diammonium hydrogen phosphate ((NH4)2HPO4) in a basic solution. The precipitates are dissolved in dilute acetic acid. To identify each cation, a confirmatory test is performed.

All three cations form bright yellow chromate salts upon the addition of potassium chromate (K2CrO4); however, only barium chromate (BaCrO4) is insoluble in acetic acid. The solution can be filtered, and the filtrate contains Ca2+ and Mg2+.

The filtrate can now be divided into two parts to test for the remaining cations. If the solution forms a white precipitate in the presence of ammonium oxalate ((NH4)2C2O4) solution, Ca2+ ions can be confirmed. The white precipitate is that of calcium oxalate, which is insoluble in both water and acetic acid.

Mg2+ is identified by a charcoal cavity test. In this test, metallic carbonates are decomposed into the corresponding metal oxide in a charcoal cavity. The color of the residue indicates the possible cation. Magnesium oxide (MgO) leaves a white residue in the charcoal cavity. This residue is treated with a few drops of Cobalt nitrate (Co(NO3)2) solution. With heat, cobalt nitrate decomposes into cobalt (II) oxide, which forms a pink amalgam (CoO-MgO), confirming the presence of Mg2+.

Tags
Qualitative AnalysisMetal IonsCationsPrecipitating ReagentInsoluble SaltsAqueous SolutionsGroup 1 CationsChloride SaltsHydrochloric AcidPrecipitateCentrifugationFiltrationSupernatantHydrogen Sulfide GasMetal SulfideProtonsAcidic ConditionsGroup 2 Metal Ions

From Chapter 16:

article

Now Playing

16.14 : Qualitative Analysis

Acid-base and Solubility Equilibria

13.3K Views

article

16.1 : Common Ion Effect

Acid-base and Solubility Equilibria

37.9K Views

article

16.2 : Buffers

Acid-base and Solubility Equilibria

156.9K Views

article

16.3 : Henderson-Hasselbalch Equation

Acid-base and Solubility Equilibria

62.8K Views

article

16.4 : Calculating pH Changes in a Buffer Solution

Acid-base and Solubility Equilibria

48.9K Views

article

16.5 : Buffer Effectiveness

Acid-base and Solubility Equilibria

44.8K Views

article

16.6 : Titration Calculations: Strong Acid - Strong Base

Acid-base and Solubility Equilibria

26.9K Views

article

16.7 : Titration Calculations: Weak Acid - Strong Base

Acid-base and Solubility Equilibria

39.0K Views

article

16.8 : Indicators

Acid-base and Solubility Equilibria

44.9K Views

article

16.9 : Titration of a Polyprotic Acid

Acid-base and Solubility Equilibria

90.3K Views

article

16.10 : Solubility Equilibria

Acid-base and Solubility Equilibria

45.3K Views

article

16.11 : Factors Affecting Solubility

Acid-base and Solubility Equilibria

31.0K Views

article

16.12 : Formation of Complex Ions

Acid-base and Solubility Equilibria

21.4K Views

article

16.13 : Precipitation of Ions

Acid-base and Solubility Equilibria

25.8K Views

article

16.15 : Acid-Base Titration Curves

Acid-base and Solubility Equilibria

118.6K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved