Sign In

2.10 : Bond Dissociation Energy and Activation Energy

Bond energy is the energy required to break a bond homolytically. These values are usually expressed in units of kcal/mol or kJ/mol and are referred to as bond dissociation energies when given for specific bonds or average bond energies when indicated for a given type of bond over many compounds. Firstly, the bond dissociation energy for a single bond is weaker than that of a double bond, which in turn is weaker than that of a triple bond. Secondly, hydrogen forms relatively strong bonds with carbon, nitrogen, and oxygen. Finally, with the exception of carbon and hydrogen, single bonds between atoms of the same element are relatively weak. Reactions between organic compounds involve the making and breaking of bonds. Hence, the strengths of bonds and their resistance to breaking are essential concepts in organic chemistry.

Reactions in which bonds are broken pass through a high-energy transition state before transforming into products. In order to reach this transition state, the reactant molecules must be oriented in a suitable direction and must be supplied with certain threshold energy. The activation energy, ΔG, is the energy provided to the reactants to raise them to the transition state. Overall, for a reaction to occur, the reacting molecules must collide or otherwise interact. The necessary activation energy for the reactant–transition-state jump is provided by the kinetic energy of the colliding particles. Lastly, the colliding molecules must collide in a specific orientation so as to maximize the impact of the collision.

Tags
Bond Dissociation EnergyActivation EnergyHomolytic Bond BreakingBond EnergiesAverage Bond EnergiesSingle BondDouble BondTriple BondHydrogen BondsOrganic Chemistry ReactionsHigh energy Transition StateThreshold EnergyReactant MoleculesActivation Energy For Reaction

From Chapter 2:

article

Now Playing

2.10 : Bond Dissociation Energy and Activation Energy

Thermodynamics and Chemical Kinetics

7.0K Views

article

2.1 : Chemical Reactions

Thermodynamics and Chemical Kinetics

8.6K Views

article

2.2 : Enthalpy and Heat of Reaction

Thermodynamics and Chemical Kinetics

7.3K Views

article

2.3 : Energetics of Solution Formation

Thermodynamics and Chemical Kinetics

5.7K Views

article

2.4 : Entropy and Solvation

Thermodynamics and Chemical Kinetics

5.9K Views

article

2.5 : Gibbs Free Energy and Thermodynamic Favorability

Thermodynamics and Chemical Kinetics

5.6K Views

article

2.6 : Chemical and Solubility Equilibria

Thermodynamics and Chemical Kinetics

3.7K Views

article

2.7 : Rate Law and Reaction Order

Thermodynamics and Chemical Kinetics

7.1K Views

article

2.8 : Effect of Temperature Change on Reaction Rate

Thermodynamics and Chemical Kinetics

3.6K Views

article

2.9 : Multi-Step Reactions

Thermodynamics and Chemical Kinetics

6.8K Views

article

2.11 : Energy Diagrams, Transition States, and Intermediates

Thermodynamics and Chemical Kinetics

13.7K Views

article

2.12 : Predicting Reaction Outcomes

Thermodynamics and Chemical Kinetics

6.9K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved