Sign In

13.11 : Secondary Active Transport

One example of how cells use the energy contained in electrochemical gradients is demonstrated by glucose transport into cells. The ion vital to this process is sodium (Na+), which is typically present in higher concentrations extracellularly than in the cytosol. Such a concentration difference is due, in part, to the action of an enzyme "pump" embedded in the cellular membrane that actively expels Na+ from a cell. Importantly, as this pump contributes to the high concentration of positively-charged Na+ outside a cell, it also helps to make this environment "more positive" than the intracellular region. As a result, both the chemical and electrical gradients of Na+ point towards the inside of a cell, and the electrochemical gradient is similarly directed inwards.

Sodium-glucose linked transporters

Sodium-glucose linked transporters (SGLTs) exploit the energy stored in this electrochemical gradient. These proteins, primarily located in the membranes of intestinal or kidney cells, help in the absorption of glucose from the lumen of these organs into the bloodstream. In order to function, both an extracellular glucose molecule and two Na+ must bind to the SGLT. As Na+ migrates into a cell through the transporter, it travels with its electrochemical gradient, expelling energy that the protein uses to move glucose inside a cell—against its chemical gradient, since this sugar tends to be at a higher concentration within a cell. As a result, glucose travels uphill against its concentration gradient simultaneously with Na+ that travels down its electrochemical gradient. This is an example of secondary active transport, so-named because the energy source used is electrochemical in nature, rather than the primary form of ATP.

Therapies Targeting SGLTs

Given the role of glucose in certain diseases, scientists have begun to look at ways of interfering with glucose transport into cells. For example, diabetes is characterized by excess glucose in the bloodstream, which can lead to nerve damage and other complications. As a result, some researchers are assessing how SGLT expression differs between diabetics and non-diabetics, and whether inhibiting different SGLTs can help treat the disease. Alternatively, since cancer cells have been demonstrated to require more glucose compared to their normal counterparts, other investigators are examining whether glucose transporters can be a new target of anti-cancer therapies.

Tags
Secondary Active TransportElectrochemical GradientsGlucose TransportSodium NaConcentration DifferenceEnzyme PumpCellular MembraneIntracellular RegionChemical GradientElectrical GradientElectrochemical GradientSodium glucose Linked Transporters SGLTsIntestinal CellsKidney CellsGlucose AbsorptionBloodstream

From Chapter 13:

article

Now Playing

13.11 : Secondary Active Transport

Membrane Transport and Active Transporters

6.1K Views

article

13.1 : The Significance of Membrane Transport

Membrane Transport and Active Transporters

14.8K Views

article

13.2 : Membrane Transporters

Membrane Transport and Active Transporters

8.2K Views

article

13.3 : Facilitated Transport

Membrane Transport and Active Transporters

9.0K Views

article

13.4 : Primary Active Transport

Membrane Transport and Active Transporters

7.9K Views

article

13.5 : ATP Driven Pumps I: An Overview

Membrane Transport and Active Transporters

7.0K Views

article

13.6 : ATP Driven Pumps II: P-type Pumps

Membrane Transport and Active Transporters

4.2K Views

article

13.7 : ATP Driven Pumps III: V-type Pumps

Membrane Transport and Active Transporters

3.3K Views

article

13.8 : ABC Transporters: Exporter

Membrane Transport and Active Transporters

3.8K Views

article

13.9 : ABC Transporters: Importer

Membrane Transport and Active Transporters

2.6K Views

article

13.10 : Glucose Transporters

Membrane Transport and Active Transporters

21.8K Views

article

13.12 : Transcellular Transport of Solutes

Membrane Transport and Active Transporters

3.2K Views

article

13.13 : Glucose Absorption Into the Small Intestine

Membrane Transport and Active Transporters

24.7K Views

article

13.14 : Stomach pH Regulation

Membrane Transport and Active Transporters

4.9K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved