Sign In

The Structure of Intermediate Filaments

The intermediate filaments are one of three widely studied cytoskeletal filaments. They are so named as their diameter (10 nm) is in between that of microfilaments (7 nm) and the microtubules (25nm). These filaments are highly stable and can remain intact when exposed to high salt concentrations and detergents. These filaments are responsible for providing stability and mechanical support to the cells. They also help in cell adhesion and maintaining tissue integrity.

Intermediate filaments are found in almost all eukaryotic cells except lower eukaryotes like fungi and invertebrates like arthropods. In humans, around 70 genes code for different types of intermediate filament with cell type-specific expression depending on the function they perform. The mutation in these genes can lead to different diseases or disorders in humans, including Werner's syndrome, Alexander's disease, and Charcot-Marie tooth disease.

Intermediate filaments are non-polar with no defined plus or minus ends like microfilaments and microtubules; thus, no molecular motor proteins are known to be associated with them. Unlike microfilaments (F-actins) and microtubules made up of globular proteins, the monomeric units of intermediate filaments are rigid, fibrous rope-like proteins. These monomers vary among the cell types, forming a specific type of intermediate filament depending on their function. However, all monomeric units comprise a conserved alpha-helical central coiled-coil rod domain flanked by the head and tail domains. The conserved alpha-helical rod domain has 310 amino acids divided into three conserved segments with hydrophobic amino acid sequences separated by linkers. The rod domain helps in the lateral association of monomers to form the dimers and subsequently the tetramers, the basic soluble units of the intermediate filaments. The tetramers then assemble into unit-length filaments, which further associate to form the intermediate filaments.

Tags
Intermediate FilamentsCytoskeletal FilamentsMicrofilamentsMicrotubulesStabilityMechanical SupportCell AdhesionTissue IntegrityEukaryotic CellsGenesCell Type specific ExpressionMutationDiseasesDisordersNon polarMolecular Motor ProteinsRigid ProteinsFibrous Rope like Proteins

From Chapter undefined:

article

Now Playing

The Structure of Intermediate Filaments

Related Videos

2.9K Views

article

Microtubules

Related Videos

5.4K Views

article

Microtubule Instability

Related Videos

2.4K Views

article

Microtubule Formation

Related Videos

4.7K Views

article

Microtubule Associated Proteins (MAPs)

Related Videos

3.3K Views

article

Destabilization of Microtubules

Related Videos

2.2K Views

article

Microtubule Associated Motor Proteins

Related Videos

6.5K Views

article

The Movement of Organelles and Vesicles

Related Videos

3.4K Views

article

Assembly of Complex Microtubule Structures

Related Videos

1.6K Views

article

Microtubules in Cell Motility

Related Videos

2.5K Views

article

Mechanism of Ciliary Motion

Related Videos

3.1K Views

article

Microtubules in Signaling

Related Videos

1.6K Views

article

Drugs that Stabilize Microtubules

Related Videos

1.6K Views

article

Drugs that Destabilize Microtubules

Related Videos

1.7K Views

article

Types of Intermediate Filaments

Related Videos

2.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved