Sign In

17.9 : SNAREs and Membrane Fusion

Once a transport vesicle has recognized its target organelle, the vesicular membrane needs to fuse with the target membrane to unload the cargo. Transmembrane proteins called SNAREs present on organelle membranes and their vesicles, mediate vesicle fusion.

SNAREs exist in pairs that symmetrically interact and catalyze the fusion of the lipid bilayers in vesicle and target organelle. v-SNARE in the vesicle membrane are single polypeptide chains that bind to a complementary t-SNARE, composed of 2 helical proteins, in the target membrane. The binding of the SNAREs results in forming an active and stable trans-SNARE complex that ensures that the vesicle has bound to the correct location to enable the accurate delivery of cargo.

Rab proteins regulate the inhibitory proteins associated with t-SNAREs to prevent incorrect vesicles from fusing to the target membrane. When the cognate vesicle is in the vicinity, Rab proteins recruit Rab effectors that release the inhibitory proteins and allow the formation of the trans-SNARE complex.

SNARE family of proteins are involved in many pathways such as the retrieval pathway at the ER and Golgi interface, autophagosome fusion with the lysosome, and several other processes such as fertilization of an ovum by sperm, myoblast fusion in muscle fibers, and targeted therapy for several viral diseases such as AIDs, where the viral membrane fuses to the plasma membrane. In animal cells, around 35 different SNAREs are known, each associated with specific organelles in the secretory and endocytic pathways.

Tags
SNAREsMembrane FusionTransport VesicleTarget OrganelleVesicular MembraneCargoTransmembrane ProteinsV SNARET SNARELipid BilayersTrans SNARE ComplexRab ProteinsInhibitory ProteinsRab EffectorsRetrieval PathwayAutophagosome FusionMyoblast FusionViral Diseases

From Chapter 17:

article

Now Playing

17.9 : SNAREs and Membrane Fusion

Intracellular Membrane Traffic

4.8K Views

article

17.1 : Introduction to Membrane Traffic

Intracellular Membrane Traffic

5.6K Views

article

17.2 : COP Coated Vesicles

Intracellular Membrane Traffic

6.8K Views

article

17.3 : Clathrin Coated Vesicles

Intracellular Membrane Traffic

5.6K Views

article

17.4 : Phosphoinositides and PIPs

Intracellular Membrane Traffic

3.1K Views

article

17.5 : Coat Assembly and GTPases

Intracellular Membrane Traffic

3.1K Views

article

17.6 : Pinching-off of Coated Vesicles

Intracellular Membrane Traffic

2.6K Views

article

17.7 : Rab Proteins

Intracellular Membrane Traffic

3.6K Views

article

17.8 : Rab Cascades

Intracellular Membrane Traffic

2.5K Views

article

17.10 : Vesicular Tubular Clusters

Intracellular Membrane Traffic

2.1K Views

article

17.11 : ER Retrieval Pathway

Intracellular Membrane Traffic

3.3K Views

article

17.12 : Golgi Apparatus

Intracellular Membrane Traffic

9.9K Views

article

17.13 : Protein Glycosylation

Intracellular Membrane Traffic

5.5K Views

article

17.14 : Proteoglycans

Intracellular Membrane Traffic

3.0K Views

article

17.15 : Oligosaccharide Assembly

Intracellular Membrane Traffic

2.5K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved