Sign In

15.11 : α-Bromination of Carboxylic Acids: Hell–Volhard–Zelinski Reaction

The method to achieve α-brominated carboxylic acids using a mixture of phosphorus tribromide and bromine is known as the Hell–Volhard–Zelinski reaction. The reaction is catalyzed by phosphorus tribromide, which can be used directly or produced in situ from red phosphorus and bromine. The mechanism comprises PBr3 catalyzed conversion of acid to acid bromide and hydrogen bromide. The acid bromide enolizes to its enol form in the presence of HBr. The nucleophilic enol attacks the bromine molecule to give an α-bromo acid bromide. The resulting molecule, upon subsequent hydrolysis, yields the desired α-bromo acid.

Tags
brominationCarboxylic AcidsHell Volhard Zelinski ReactionPhosphorus TribromideBromineAcid BromideEnolNucleophilic AdditionHydrolysis

From Chapter 15:

article

Now Playing

15.11 : α-Bromination of Carboxylic Acids: Hell–Volhard–Zelinski Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.7K Views

article

15.1 : Reactivity of Enols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.5K Views

article

15.2 : Reactivity of Enolate Ions

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.2K Views

article

15.3 : Types of Enols and Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.4 : Enolate Mechanism Conventions

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.5 : Regioselective Formation of Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.6 : Stereochemical Effects of Enolization

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.7 : Acid-Catalyzed α-Halogenation of Aldehydes and Ketones

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.8 : Base-Promoted α-Halogenation of Aldehydes and Ketones

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.9 : Multiple Halogenation of Methyl Ketones: Haloform Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.7K Views

article

15.10 : α-Halogenation of Carboxylic Acid Derivatives: Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

article

15.12 : Reactions of α-Halocarbonyl Compounds: Nucleophilic Substitution

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

article

15.13 : Nitrosation of Enols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.14 : C–C Bond Formation: Aldol Condensation Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

10.4K Views

article

15.15 : Base-Catalyzed Aldol Addition Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.7K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved