Sign In

4.6 : Projectile Motion: Equations

Projectile motion is commonly observed in our day-to-day life. For example, a basketball thrown by a player, an arrow shot from a bow, and kids jumping into the pool, all undergo projectile motion.

Any projectile motion problem can be solved by using the following strategy:

  1. Initially, resolve the motion into horizontal and vertical components along the x- and y-axes. The magnitudes of the components of displacement along these axes are x and y. The magnitudes of the vertical and horizontal components of velocity are given by v⋅sin(θ) and v⋅cos(θ), respectively, where v is the magnitude of the velocity and θ is its direction relative to the horizontal.
  2. Treat the motion as two independent one-dimensional motions: one horizontal and one vertical. Use the kinematic equations for horizontal and vertical motion presented earlier.
  3. Solve for the unknowns in the two separate motions. Note that the only common variable between the motions is time, t. The problem-solving procedures here are the same as those for one-dimensional kinematics.
  4. Recombine quantities in the horizontal and vertical directions to find the total displacement and velocity. Finally, solve for the magnitude and direction of the displacement and velocity using

Equation1

Equation2

Equation3

where θ is the direction of the displacement.

This text is adapted from Openstax, University Physics Volume 1, Section 4.3: Projectile Motion.

Tags
Projectile MotionKinematic EquationsHorizontal MotionVertical MotionDisplacementVelocityTimeAngleOne dimensional Kinematics

From Chapter 4:

article

Now Playing

4.6 : Projectile Motion: Equations

Motion in Two or Three Dimensions

8.0K Views

article

4.1 : Position and Displacement Vectors

Motion in Two or Three Dimensions

7.7K Views

article

4.2 : Average and Instantaneous Velocity Vectors

Motion in Two or Three Dimensions

5.4K Views

article

4.3 : Acceleration Vectors

Motion in Two or Three Dimensions

6.3K Views

article

4.4 : Direction of Acceleration Vectors

Motion in Two or Three Dimensions

6.7K Views

article

4.5 : Projectile Motion

Motion in Two or Three Dimensions

12.7K Views

article

4.7 : Projectile Motion: Example

Motion in Two or Three Dimensions

7.9K Views

article

4.8 : Uniform Circular Motion

Motion in Two or Three Dimensions

6.7K Views

article

4.9 : Non-uniform Circular Motion

Motion in Two or Three Dimensions

6.5K Views

article

4.10 : Relative Velocity in One Dimension

Motion in Two or Three Dimensions

5.9K Views

article

4.11 : Relative Velocity in Two Dimensions

Motion in Two or Three Dimensions

6.0K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved