Sign In

20.8 : Radical Reactivity: Overview

Radicals, the highly reactive species, gain stability by undergoing three different reactions. The first reaction involves a radical-radical coupling, in which a radical combines with another radical, forming a spin‐paired molecule. The second reaction is between a radical and a spin‐paired molecule, generating a new radical and a new spin‐paired molecule. The third reaction is radical decomposition in a unimolecular reaction, forming a new radical and a spin‐paired molecule. These three possible reactions result in six different arrow-pushing patterns in radical mechanisms, such as homolysis, addition to a π bond, hydrogen abstraction, halogen abstraction, elimination, and coupling. These six patterns can be categorized into three typical steps, initiation, propagation, and termination, of a radical mechanism. Typically, these radical reactions are governed by two key factors: steric hindrance and electronic stabilization.

Tags
RadicalsRadical ReactionsRadical radical CouplingSpin paired MoleculeRadical DecompositionUnimolecular ReactionArrow pushing PatternsHomolysisHydrogen AbstractionHalogen AbstractionEliminationInitiationPropagationTerminationSteric HindranceElectronic Stabilization

From Chapter 20:

article

Now Playing

20.8 : Radical Reactivity: Overview

Radical Chemistry

1.7K Views

article

20.1 : Radicals: Electronic Structure and Geometry

Radical Chemistry

3.6K Views

article

20.2 : Electron Paramagnetic Resonance (EPR) Spectroscopy: Organic Radicals

Radical Chemistry

2.2K Views

article

20.3 : Radical Formation: Overview

Radical Chemistry

1.9K Views

article

20.4 : Radical Formation: Homolysis

Radical Chemistry

3.1K Views

article

20.5 : Radical Formation: Abstraction

Radical Chemistry

3.2K Views

article

20.6 : Radical Formation: Addition

Radical Chemistry

1.5K Views

article

20.7 : Radical Formation: Elimination

Radical Chemistry

1.5K Views

article

20.9 : Radical Reactivity: Steric Effects

Radical Chemistry

1.8K Views

article

20.10 : Radical Reactivity: Concentration Effects

Radical Chemistry

1.4K Views

article

20.11 : Radical Reactivity: Electrophilic Radicals

Radical Chemistry

1.7K Views

article

20.12 : Radical Reactivity: Nucleophilic Radicals

Radical Chemistry

1.9K Views

article

20.13 : Radical Reactivity: Intramolecular vs Intermolecular

Radical Chemistry

1.6K Views

article

20.14 : Radical Autoxidation

Radical Chemistry

1.9K Views

article

20.15 : Radical Oxidation of Allylic and Benzylic Alcohols

Radical Chemistry

1.7K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved