Sign In

20.10 : Radical Reactivity: Concentration Effects

In a radical reaction, the concentration of starting materials governs the selectivity of a radical. For example, the reaction between an alkyl halide and an alkene, in the presence of tin hydride and AIBN, begins with the generation of a tin radical. The generated radical then abstracts halogen from the alkyl halide, producing an alkyl radical. This alkyl radical can either react with tin hydride, yielding an alkane, or add to an alkene, generating a nitrile-stabilized radical, eventually forming the addition product. The formation of the alkane and the addition product has an equal possibility because the rate constant for the reaction between the alkyl radical and tin hydride is almost the same as for the reaction between an alkyl radical and the alkene. But, the reaction towards the addition product can be driven by increasing the alkene concentration at least ten times higher than that of the tin hydride. This is because the higher alkene concentration will increase the reaction rate between the alkyl radical and the alkene by ten times, thereby favoring the formation of the addition product over the alkane.

Tags
Radical ReactionConcentration EffectsAlkyl HalideAlkeneTin HydrideAIBNTin RadicalAlkyl RadicalNitrile stabilized RadicalAddition ProductReaction SelectivityReaction Rate

From Chapter 20:

article

Now Playing

20.10 : Radical Reactivity: Concentration Effects

Radical Chemistry

1.4K Views

article

20.1 : Radicals: Electronic Structure and Geometry

Radical Chemistry

3.6K Views

article

20.2 : Electron Paramagnetic Resonance (EPR) Spectroscopy: Organic Radicals

Radical Chemistry

2.2K Views

article

20.3 : Radical Formation: Overview

Radical Chemistry

1.9K Views

article

20.4 : Radical Formation: Homolysis

Radical Chemistry

3.1K Views

article

20.5 : Radical Formation: Abstraction

Radical Chemistry

3.2K Views

article

20.6 : Radical Formation: Addition

Radical Chemistry

1.5K Views

article

20.7 : Radical Formation: Elimination

Radical Chemistry

1.5K Views

article

20.8 : Radical Reactivity: Overview

Radical Chemistry

1.7K Views

article

20.9 : Radical Reactivity: Steric Effects

Radical Chemistry

1.8K Views

article

20.11 : Radical Reactivity: Electrophilic Radicals

Radical Chemistry

1.7K Views

article

20.12 : Radical Reactivity: Nucleophilic Radicals

Radical Chemistry

1.9K Views

article

20.13 : Radical Reactivity: Intramolecular vs Intermolecular

Radical Chemistry

1.6K Views

article

20.14 : Radical Autoxidation

Radical Chemistry

1.9K Views

article

20.15 : Radical Oxidation of Allylic and Benzylic Alcohols

Radical Chemistry

1.7K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved