Sign In

8.2 : NMR Spectroscopy: Chemical Shift Overview

The position of the absorption signal of a sample is reported relative to the position of the signal of tetramethylsilane (TMS), which is added as an internal reference while recording spectra. The difference between the absorption frequencies of the sample and TMS (in Hz) is divided by the spectrometer operating frequency (in MHz) to obtain a dimensionless quantity called the chemical shift. It is reported on the δ (delta) scale and expressed in parts per million.

For instance, the proton signal from benzene is 436 Hz higher than the TMS signal in a 60 MHz spectrometer, while the difference is 2181 Hz in a 300 MHz instrument. In both cases, the obtained chemical shift is 7.27 ppm, indicating that it is independent of the instrument operating frequency. The low chemical shifts on the right side of the spectrum correspond to low-frequency upfield signals from shielded nuclei in electron-dense environments. In contrast, the higher chemical shifts correspond to high-frequency downfield signals from deshielded nuclei in electron-poor settings.

Tags
NMR SpectroscopyChemical ShiftTetramethylsilaneTMSAbsorption SignalSpectrometer FrequencyDimensionless QuantityDelta ScaleProton SignalBenzenePpmUpfield SignalsDownfield SignalsShielded NucleiDeshielded Nuclei

From Chapter 8:

article

Now Playing

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

844 Views

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

394 Views

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Views

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

766 Views

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

884 Views

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Views

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.0K Views

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Views

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Views

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

972 Views

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

2.8K Views

article

8.12 : Interpreting &sup1;H NMR Signal Splitting: The (<em>n</em> + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

954 Views

article

8.13 : Spin&ndash;Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

742 Views

article

8.14 : Spin&ndash;Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

825 Views

article

8.15 : Spin&ndash;Spin Coupling: Two-Bond Coupling (Geminal Coupling)

Interpreting Nuclear Magnetic Resonance Spectra

814 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved