Nucleophilic substitution in α-halocarbonyl compounds can be achieved via an SN2 pathway. The reaction in α-haloketones is generally carried out with less basic nucleophiles. The use of strong basic nucleophiles leads to the generation of α-⁠haloenolate ions, which often participate in other side reactions.
However, α-haloacids undergo SN2 reactions with strong basic nucleophiles. Under this condition, the base abstracts the acidic proton of the acid forming its conjugate base. The anion further participates in a substitution reaction, and the final acidification results in α-substituted acids.
In α-halocarbonyl compounds, nucleophilic substitution via an SN1 pathway is forbidden, as it generates less stable α-carbocation intermediate.
From Chapter undefined:
Now Playing
Related Videos
3.0K Views
Related Videos
2.4K Views
Related Videos
2.1K Views
Related Videos
1.9K Views
Related Videos
1.7K Views
Related Videos
2.2K Views
Related Videos
1.7K Views
Related Videos
3.2K Views
Related Videos
3.0K Views
Related Videos
1.7K Views
Related Videos
2.9K Views
Related Videos
2.7K Views
Related Videos
1.9K Views
Related Videos
10.0K Views
Related Videos
2.5K Views
See More
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved