Regular Claisen condensation involves the synthesis of β-ketoesters by combining identical ester molecules bearing two α hydrogens in the presence of an alkoxide base. The reaction commences with the deprotonation of the acidic α hydrogen by the base to form a resonance stabilized ester enolate. This nucleophilic ion then attacks the carbonyl center of another ester molecule to generate a tetrahedral alkoxide intermediate. Next, the expulsion of the alkoxide group from the intermediate restores the carbonyl center and produces an acyl-substituted ester. The alkoxide by-product subsequently abstracts the second α proton from the β-dicarbonyl compound to form a doubly-stabilized enolate ion. This step is the driving force of the reaction to completion and suggests the essential requirement of two α protons in starting ester. Finally, acidification of the enolate produces the desired β-ketoester. The utility of the Claisen condensation process is also observed in biological systems. For instance, the synthesis of acetoacetyl-CoA from the condensation of acetyl-CoA in the presence of thiolase enzyme.
From Chapter undefined:
Now Playing
Related Videos
3.0K Views
Related Videos
2.4K Views
Related Videos
2.1K Views
Related Videos
2.0K Views
Related Videos
1.7K Views
Related Videos
2.2K Views
Related Videos
1.7K Views
Related Videos
3.2K Views
Related Videos
3.0K Views
Related Videos
1.7K Views
Related Videos
2.9K Views
Related Videos
2.7K Views
Related Videos
3.0K Views
Related Videos
1.9K Views
Related Videos
10.1K Views
See More
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved