Sign In

27.11 : Type IV Collagen of Basal Lamina

Type IV collagen is a 400 nm long, network-forming collagen that acts as a barrier between the epithelial and endothelial cells. Type IV collagen forms the backbone of the basement membrane by scaffolding with laminin, entactin, proteoglycans, and fibronectin. Apart from rendering structural support to the basement membrane, it also helps entail signaling potentials necessary for both pathological and physiological functions.

A type IV collagen molecule has six alpha chains which can exist in at least three hetero-trimeric triple helical configurations viz. [α1(IV)]2α2(IV), [α3(IV)]2α4(IV), and [α5(IV)]2α6(IV). The alpha chain is composed of a cysteine-rich N-terminal S-domain, a long triple helical domain with Gly–X–Y repeats, and a globular C-terminal domain containing approximately 230 amino acids. These collagen fibers can either form a dimer via head-to-head interactions or a tetramer via tail-to-tail interactions.

Mutation of the genes responsible for coding type IV collagen, such as COL4A5, can lead to Alport syndrome. In this syndrome, the glomerular basement membrane thins and eventually forms fissures. This disease is characterized by kidney problems, hearing loss, and eye abnormalities. Excessive deposition of collagen IV in the liver may lead to liver fibrosis and cirrhosis. The inflammation of liver cells activates the Kupffer cells to release fibrogenic mediators, which eventually results in increased secretion of extracellular matrix proteins.

Tags
Type IV CollagenBasal LaminaBasement MembraneNetwork forming CollagenAlpha ChainsHetero trimeric ConfigurationsCOL4A5Alport SyndromeKidney ProblemsLiver FibrosisCirrhosisExtracellular Matrix ProteinsSignaling PotentialsStructural Support

From Chapter 27:

article

Now Playing

27.11 : Type IV Collagen of Basal Lamina

Extracellular Matrix in Animals

2.0K Views

article

27.1 : The Extracellular Matrix

Extracellular Matrix in Animals

7.3K Views

article

27.2 : Glycosaminoglycans

Extracellular Matrix in Animals

3.6K Views

article

27.3 : Collagens are the Major Structural Proteins of ECM

Extracellular Matrix in Animals

3.4K Views

article

27.4 : Fibril-associated Collagen

Extracellular Matrix in Animals

2.3K Views

article

27.5 : Elastin is Responsible for Tissue Elasticity

Extracellular Matrix in Animals

2.1K Views

article

27.6 : Fibronectins Connect Cells with ECM

Extracellular Matrix in Animals

2.2K Views

article

27.7 : Matrix Proteoglycans and Glycoproteins

Extracellular Matrix in Animals

2.8K Views

article

27.8 : Role of Matrix Metalloproteases in Degradation of ECM

Extracellular Matrix in Animals

2.1K Views

article

27.9 : Basal Lamina are the Specialized Form of ECM

Extracellular Matrix in Animals

2.4K Views

article

27.10 : Laminins are the Adhesive Proteins of Basal Lamina

Extracellular Matrix in Animals

2.0K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved