Sign In

43.5 : Chromatin Modification in iPS Cells

Chromatin modification alters gene expression; therefore, scientists can add histone-modifying enzymes, histone variants, and chromatin remodeling complexes to somatic cells to aid reprogramming into pluripotent stem (iPS) cells.

Compact chromatin makes reprogramming difficult. Enzymes, such as histone demethylases and acetyltransferases, are often added during reprogramming to loosen the chromatin, making the DNA more accessible to transcription factors. Molecules that inhibit histone deacetylases or histone methyltransferases are added to increase the reprogramming efficiency. Similar to histone methylation, DNA methylation also causes chromatin compaction. Inhibitors of DNA methylases help loosen the chromatin and allow the expression of genes essential for pluripotency.

Histone variants can also be added to alter the gene expression pattern. Variants, such as H2AZ and H3.3, change gene expression because they have different amounts of DNA wound around them, allowing specific genes to be more accessible. Additionally, H2AZ often has increased acetylation, enabling more transcription factors to bind to DNA and enhancing reprogramming.

Tags
Chromatin ModificationIPS CellsGene ExpressionHistone modifying EnzymesChromatin RemodelingReprogramming EfficiencyHistone DemethylasesHistone AcetyltransferasesDNA MethylationTranscription FactorsHistone VariantsH2AZH3 3

From Chapter 43:

article

Now Playing

43.5 : Chromatin Modification in iPS Cells

Embryonic and Induced Pluripotent Stem Cells

1.6K Views

article

43.1 : Embryonic Stem Cells

Embryonic and Induced Pluripotent Stem Cells

3.1K Views

article

43.2 : Maintenance of the ES Cell State

Embryonic and Induced Pluripotent Stem Cells

2.1K Views

article

43.3 : Induced Pluripotent Stem Cells

Embryonic and Induced Pluripotent Stem Cells

3.6K Views

article

43.4 : Somatic to iPS Cell Reprogramming

Embryonic and Induced Pluripotent Stem Cells

2.0K Views

article

43.6 : iPS Cell Differentiation

Embryonic and Induced Pluripotent Stem Cells

2.5K Views

article

43.7 : Forced Transdifferentiation

Embryonic and Induced Pluripotent Stem Cells

1.8K Views

article

43.8 : EPS and iPS Cells in Disease Research

Embryonic and Induced Pluripotent Stem Cells

2.6K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved