Sign In

11.5 : Outliers and Influential Points

An outlier is an observation of data that does not fit the rest of the data. It is sometimes called an extreme value. When you graph an outlier, it will appear not to fit the pattern of the graph. Some outliers are due to mistakes (for example, writing down 50 instead of 500), while others may indicate that something unusual is happening. Outliers are present far from the least squares line in the vertical direction. They have large "errors," where the "error" or residual is the vertical distance from the line to the point.

Outliers need to be examined closely. Sometimes, for some reason or another, they should not be included in the data analysis. An outlier may be a result of erroneous data. Other times, an outlier may hold valuable information about the population under study and should remain included in the data. The key is carefully examining what causes a data point to be an outlier.

Besides outliers, a sample may contain one or a few points that are called influential points. Influential points are observed data points that are far from the other observed data points in the horizontal direction. These points may have a significant effect on the slope of the regression line. To identify an influential point, you can remove it from the data set and see if the slope of the regression line is changed significantly.

Computers and many calculators can be used to identify outliers from the data. Computer output for regression analysis will often identify both outliers and influential points so that you can examine them.

This text is adapted from Openstax, Introductory Statistics, Section 12.6 Outliers

Tags
OutliersInfluential PointsExtreme ValuesData AnalysisLeast Squares LineRegression LineData PointsVertical DistanceHorizontal DirectionResidualsData ExaminationStatistical AnalysisOpenstax

From Chapter 11:

article

Now Playing

11.5 : Outliers and Influential Points

Correlation and Regression

3.5K Views

article

11.1 : Correlation

Correlation and Regression

9.7K Views

article

11.2 : Coefficient of Correlation

Correlation and Regression

5.1K Views

article

11.3 : Calculating and Interpreting the Linear Correlation Coefficient

Correlation and Regression

4.8K Views

article

11.4 : Regression Analysis

Correlation and Regression

4.7K Views

article

11.6 : Residuals and Least-Squares Property

Correlation and Regression

6.1K Views

article

11.7 : Residual Plots

Correlation and Regression

3.7K Views

article

11.8 : Variation

Correlation and Regression

5.5K Views

article

11.9 : Prediction Intervals

Correlation and Regression

2.0K Views

article

11.10 : Multiple Regression

Correlation and Regression

2.4K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved