Sign In

20.14 : Adiabatic Processes for an Ideal Gas

When an ideal gas is compressed adiabatically, that is, without adding heat, work is done on it, and its temperature increases. In an adiabatic expansion, the gas does work, and its temperature drops. Adiabatic compressions actually occur in the cylinders of a car, where the compressions of the gas-air mixture take place so quickly that there is no time for the mixture to exchange heat with its environment. Nevertheless, because work is done on the mixture during the compression, its temperature does rise significantly. In fact, the temperature increase can be so large that the mixture can explode without the addition of a spark. Such explosions, since they are not timed, make a car run poorly—it usually “knocks.” As the ignition temperature rises with the octane of the gasoline, the usage of higher-octane gasoline is one way to overcome this issue.

Another interesting adiabatic process is the free expansion of a gas. Imagine a gas is confined by a membrane to one side of a two-compartment, thermally insulated container. When the membrane is punctured, the gas rushes into the empty side of the container, thereby expanding freely. As the gas expands “against a vacuum”, the pressure decreases (p = 0), it does no work, and, because the vessel is thermally insulated, the expansion is adiabatic. With Q = 0 and W = 0 in the first law, dU = 0, so the internal energy in the initial and final equilibrium states is the same for the free expansion. If the gas is ideal, the internal energy depends only on the temperature. Therefore, when an ideal gas expands freely, its temperature does not change.

Tags
Adiabatic ProcessIdeal GasTemperature IncreaseAdiabatic ExpansionGas CompressionWork DoneCar CylindersIgnition TemperatureOctane RatingFree ExpansionThermally Insulated ContainerInternal EnergyPressure Decrease

From Chapter 20:

article

Now Playing

20.14 : Adiabatic Processes for an Ideal Gas

The First Law of Thermodynamics

2.6K Views

article

20.1 : Thermodynamic Systems

The First Law of Thermodynamics

3.3K Views

article

20.2 : Work Done During Volume Change

The First Law of Thermodynamics

2.9K Views

article

20.3 : Path Between Thermodynamics States

The First Law of Thermodynamics

2.5K Views

article

20.4 : Heat and Free Expansion

The First Law of Thermodynamics

1.1K Views

article

20.5 : Internal Energy

The First Law of Thermodynamics

3.6K Views

article

20.6 : First Law of Thermodynamics

The First Law of Thermodynamics

3.0K Views

article

20.7 : First Law Of Thermodynamics: Problem-Solving

The First Law of Thermodynamics

1.7K Views

article

20.8 : Cyclic Processes And Isolated Systems

The First Law of Thermodynamics

2.4K Views

article

20.9 : Isothermal Processes

The First Law of Thermodynamics

2.9K Views

article

20.10 : Isochoric and Isobaric Processes

The First Law of Thermodynamics

2.7K Views

article

20.11 : Heat Capacities of an Ideal Gas I

The First Law of Thermodynamics

2.2K Views

article

20.12 : Heat Capacities of an Ideal Gas II

The First Law of Thermodynamics

2.1K Views

article

20.13 : Heat Capacities of an Ideal Gas III

The First Law of Thermodynamics

2.0K Views

article

20.15 : Pressure and Volume in an Adiabatic Process

The First Law of Thermodynamics

2.3K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved