Sign In

27.3 : Resistors In Parallel

Resistors are in parallel when one end of all the resistors are connected to a continuous wire of negligible resistance and the other end of all the resistors are also connected to one another through a continuous wire of negligible resistance. In the case of a parallel configuration, the potential drop across each resistor is the same. Current through each resistor can be found using Ohm’s law, I = V/R, where the voltage is constant across each resistor. The sum of the individual currents equals the current that flows into the parallel connections.

The expression for equivalent resistance can be generalized for the n-number of resistors connected parallelly.

Equation1

For any number of resistors in parallel, the reciprocal of the equivalent resistance equals the sum of the reciprocals of their individual resistances.

An automobile’s headlights and taillights, radio, and the wiring in a house or any building are examples of systems that are wired in parallel. The advantage of connecting a circuit in parallel combination is that each subsystem utilizes the total voltage of the source and can operate independently. If one component in the parallel circuit burns out, the others keep working.

Tags
ResistorsParallel ConfigurationPotential DropCurrentOhm s LawEquivalent ResistanceIndividual ResistancesCircuitVoltage SourceIndependent OperationElectrical Systems

From Chapter 27:

article

Now Playing

27.3 : Resistors In Parallel

Direct-Current Circuits

3.3K Views

article

27.1 : Electromotive Force

Direct-Current Circuits

3.6K Views

article

27.2 : Resistors In Series

Direct-Current Circuits

3.4K Views

article

27.4 : Combination Of Resistors

Direct-Current Circuits

1.7K Views

article

27.5 : Kirchhoff's Rules

Direct-Current Circuits

3.8K Views

article

27.6 : Kirchoff's Rules: Application

Direct-Current Circuits

1.1K Views

article

27.7 : DC Battery

Direct-Current Circuits

584 Views

article

27.8 : Multiple Voltage Sources

Direct-Current Circuits

936 Views

article

27.9 : Galvanometer

Direct-Current Circuits

1.9K Views

article

27.10 : Ammeter

Direct-Current Circuits

1.9K Views

article

27.11 : Voltmeter

Direct-Current Circuits

780 Views

article

27.12 : Potentiometer

Direct-Current Circuits

364 Views

article

27.13 : Wheatstone Bridge

Direct-Current Circuits

316 Views

article

27.14 : Power Dissipated in a Circuit: Problem Solving

Direct-Current Circuits

694 Views

article

27.15 : RC Circuits: Charging A Capacitor

Direct-Current Circuits

2.8K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved