Sign In

27.5 : Kirchhoff's Rules

Gustav Kirchhoff (1824–1887) devised two rules known as Kirchhoff's rules to analyze complex circuits, which cannot be analyzed with series-parallel techniques. These rules can be used to analyze any circuit, simple or complex.

Kirchhoff's first rule is called the junction rule. A junction, also known as a node, is a connection of three or more wires. The rule states that the sum of all currents entering a junction must equal the sum of all currents leaving the junction.

Equation1

This law is based on the charge conservation principle. Since the current is the flow of charge and the charge is conserved, whatever charge flows into the junction must flow out.

Kirchhoff's second rule—the loop rule—applies to the potential differences and, hence, is also referred to as the voltage rule. It states that the algebraic sum of the potential differences in any loop, including the voltage supplied by the voltage sources and resistive elements, must be equal to zero.

Equation2

This rule is based on the conservation of energy. However, the loop rule is stated in terms of potential (V) rather than potential energy (U), but the two terms are related, since U = qV. In a closed loop, the energy supplied by the battery (voltage source) must be transferred into other forms by the devices in the loop, as there is no other way to transfer energy into or out of the circuit.

Tags
Kirchhoff s RulesJunction RuleLoop RuleCharge ConservationCurrent FlowPotential DifferencesVoltage RuleConservation Of EnergyCircuit AnalysisComplex CircuitsElectrical Circuits

From Chapter 27:

article

Now Playing

27.5 : Kirchhoff's Rules

Direct-Current Circuits

3.8K Views

article

27.1 : Electromotive Force

Direct-Current Circuits

3.6K Views

article

27.2 : Resistors In Series

Direct-Current Circuits

3.4K Views

article

27.3 : Resistors In Parallel

Direct-Current Circuits

3.3K Views

article

27.4 : Combination Of Resistors

Direct-Current Circuits

1.7K Views

article

27.6 : Kirchoff's Rules: Application

Direct-Current Circuits

1.1K Views

article

27.7 : DC Battery

Direct-Current Circuits

584 Views

article

27.8 : Multiple Voltage Sources

Direct-Current Circuits

936 Views

article

27.9 : Galvanometer

Direct-Current Circuits

1.9K Views

article

27.10 : Ammeter

Direct-Current Circuits

1.9K Views

article

27.11 : Voltmeter

Direct-Current Circuits

779 Views

article

27.12 : Potentiometer

Direct-Current Circuits

364 Views

article

27.13 : Wheatstone Bridge

Direct-Current Circuits

316 Views

article

27.14 : Power Dissipated in a Circuit: Problem Solving

Direct-Current Circuits

694 Views

article

27.15 : RC Circuits: Charging A Capacitor

Direct-Current Circuits

2.8K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved