Kirchhoff's rules quantify the current flowing through a circuit and the voltage variations around the loop in a circuit. Applying Kirchhoff's rules generates a set of linear equations that allow us to find the unknown values in circuits. These may be currents, voltages, or resistances.
When applying Kirchhoff's first rule, the junction rule, label the current in each branch and decide its direction. If the chosen direction is wrong, it will have the correct magnitude, although the current will be negative. When applying Kirchhoff's second rule, the loop rule, identify a closed loop and decide the direction to go around it, clockwise or counterclockwise. In many circuits, it will be necessary to construct more than one loop. When traversing each loop, be consistent with the sign of the change in potential.
In the case of the voltage source, the emf is considered positive when we travel through the source in the direction from a negative to a positive terminal. It is considered to be negative when we travel in the reverse direction. When encountering a resistor in the loop, if the travel direction of the loop through the resistor is the same as that of the assumed current direction, the potential drop across the resistor is negative. However, the potential drop across the resistor is taken as positive when the travel direction is opposite to the assumed current direction.
In conclusion, Kirchhoff's method of analysis requires the following procedure:
From Chapter 27:
Now Playing
Direct-Current Circuits
1.1K Views
Direct-Current Circuits
3.6K Views
Direct-Current Circuits
3.4K Views
Direct-Current Circuits
3.3K Views
Direct-Current Circuits
1.8K Views
Direct-Current Circuits
3.8K Views
Direct-Current Circuits
584 Views
Direct-Current Circuits
936 Views
Direct-Current Circuits
1.9K Views
Direct-Current Circuits
1.9K Views
Direct-Current Circuits
781 Views
Direct-Current Circuits
364 Views
Direct-Current Circuits
316 Views
Direct-Current Circuits
694 Views
Direct-Current Circuits
2.8K Views
See More
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved