Sign In

Replication in Eukaryotes

In eukaryotic cells, DNA replication is highly conserved and tightly regulated. Multiple linear chromosomes must be duplicated with high fidelity before cell division, so there are many proteins that fulfill specialized roles in the replication process. Replication occurs in three phases: initiation, elongation, and termination, and ends with two complete sets of chromosomes in the nucleus.

Many Proteins Orchestrate Replication at the Origin

Eukaryotic replication follows many of the same principles as prokaryotic DNA replication, but because the genome is much larger and the chromosomes are linear rather than circular, the process requires more proteins and has a few key differences. First, unlike prokaryotes, replication in eukaryotes occurs simultaneously at multiple origins of replication along each chromosome. Initiator proteins recognize and bind to these origins and recruit helicase proteins to unwind the DNA double helix. At each point of origin, two replication forks form. Primase then adds short RNA primers to the single strands of DNA, which serve as a starting point for DNA polymerase to bind and begin copying the sequence. DNA can only be synthesized in the 5'to 3'direction, so replication of both strands from a single replication fork proceeds in two different directions. The leading strand is synthesized continuously, while the lagging strand is synthesized in short stretches of 100–200 base pairs in length, called Okazaki fragments. Once the bulk of replication is complete, RNase enzymes remove the RNA primers, DNA polymerase fills the gaps, and DNA ligase seals the gaps in the new strand.

Dividing the Work of Replication Among Polymerases

The workload of copying DNA in eukaryotes is divided among multiple different types of DNA polymerase enzymes. Major families of DNA polymerases across all organisms are categorized by the similarity of their protein structures and amino acid sequences. The first families to be discovered were termed A, B, C, and X, with families Y and D identified later. Family B polymerases in eukaryotes include Pol α, which also functions as a primase at the replication fork, and Pol δ and ε, the enzymes that do most of the work of DNA replication on the leading and lagging strands of the template, respectively. Other DNA polymerases are responsible for such tasks as repairing DNA damage, copying mitochondrial and plastid DNA, and filling in gaps in the DNA sequence on the lagging strand after the RNA primers are removed.

Telomeres Protect the Ends of the Chromosomes from Degradation

Because eukaryotic chromosomes are linear, they are susceptible to degradation at the ends. To protect important genetic information from damage, the ends of chromosomes contain many non-coding repeats of highly conserved G-rich DNA, the telomeres. A short single-stranded 3'overhang at each end of the chromosome interacts with specialized proteins, which stabilize the chromosome within the nucleus. Because of the manner in which the lagging strand is synthesized, a small amount of the telomeric DNA cannot be replicated with each cell division. As a result, the telomeres gradually get shorter over the course of many cell cycles, and thus can be measured as a marker of cellular aging. Certain populations of cells, such as germ cells and stem cells, express telomerase, an enzyme that lengthens the telomeres, allowing the cell to undergo more cell cycles before the telomeres shorten.

Tags
ReplicationEukaryotesDNA ReplicationCellular ProcessesGenetic MaterialMitosisMeiosisReplication ForkChromatinPolymerase Enzymes

From Chapter undefined:

article

Now Playing

Replication in Eukaryotes

Related Videos

5.4K Views

article

The Central Dogma

Related Videos

1.3K Views

article

Types of RNA

Related Videos

778 Views

article

Transcription

Related Videos

2.0K Views

article

Translation

Related Videos

997 Views

article

Regulation of Expression at Multiple Steps

Related Videos

633 Views

article

What is the Cell Cycle?

Related Videos

1.3K Views

article

Interphase

Related Videos

1.1K Views

article

Mitosis And Cytokinesis

Related Videos

827 Views

article

The Cell Cycle Control System

Related Videos

1.3K Views

article

Molecular Factors Affecting Cell Division

Related Videos

2.4K Views

article

What is Meiosis?

Related Videos

1.0K Views

article

Overview of Cell Signaling

Related Videos

1.6K Views

article

Types of Signaling Molecules

Related Videos

656 Views

article

G Protein-coupled Receptors

Related Videos

1.0K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved