In analytical chemistry, we often perform repetitive measurements to detect and minimize inaccuracies caused by both determinate and indeterminate errors. Despite the cares we take, the presence of random errors means that repeated measurements almost never have exactly the same magnitude. The collective difference between these measurements - observed values - and the estimated or expected value is called uncertainty. Uncertainty is conventionally written after the estimated or expected value.
It is important to express the uncertainty with the correct number of significant figures, which is the number of digits required to represent the precise outcome. The magnitude of possible variations from the significant figure in either direction is expressed as addition or subtraction to the significant figure. Uncertainty represented in this way is called absolute uncertainty. The ratio of absolute uncertainty to the magnitude of the estimated or expected value is known as relative uncertainty.
From Chapter 1:
Now Playing
Chemical Applications of Statistical Analyses
153 Views
Chemical Applications of Statistical Analyses
663 Views
Chemical Applications of Statistical Analyses
2.6K Views
Chemical Applications of Statistical Analyses
3.4K Views
Chemical Applications of Statistical Analyses
691 Views
Chemical Applications of Statistical Analyses
759 Views
Chemical Applications of Statistical Analyses
399 Views
Chemical Applications of Statistical Analyses
3.2K Views
Chemical Applications of Statistical Analyses
141 Views
Chemical Applications of Statistical Analyses
227 Views
Chemical Applications of Statistical Analyses
145 Views
Chemical Applications of Statistical Analyses
2.3K Views
Chemical Applications of Statistical Analyses
3.0K Views
Chemical Applications of Statistical Analyses
681 Views
Chemical Applications of Statistical Analyses
823 Views
See More
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved