Sign In

2.11 : Gradient and Del Operator

In mathematics and physics, the gradient and del operator are fundamental concepts used to describe the behavior of functions and fields in space. The gradient is a mathematical operator that gives both the magnitude and direction of the maximum spatial rate of change. Consider a person standing on a mountain. The slope of the mountain at any given point is not defined unless it is quantified in a particular direction. For this reason, a "directional derivative" is defined, which is a vector that gives the slope and direction. The gradient of the scalar field satisfies both these conditions.

The gradient has the following general properties: (1) It operates on a scalar function and results in a vector function. (2) It is normal to a constant value surface. This property is used extensively to identify the direction of vector fields. (3) The gradient always points toward the maximum change in the scalar function.

Mathematically, the gradient of a scalar function is expressed as

Equation1

Here, 'p' is the scalar function. The term in the parenthesis is called the del operator. The del operator is a vector operator that acts on vector and scalar fields. It is a mathematical operator that, by itself, has no geometrical meaning. It is the interaction of the del operator with other quantities that gives it geometric significance.

Tags
GradientDel OperatorMathematical OperatorScalar FieldVector FunctionDirectional DerivativeSpatial Rate Of ChangeVector FieldsMaximum ChangeScalar FunctionGeometric Significance

From Chapter 2:

article

Now Playing

2.11 : Gradient and Del Operator

Vectors and Scalars

2.1K Views

article

2.1 : Introduction to Scalars

Vectors and Scalars

12.2K Views

article

2.2 : Introduction to Vectors

Vectors and Scalars

11.6K Views

article

2.3 : Vector Components in the Cartesian Coordinate System

Vectors and Scalars

15.5K Views

article

2.4 : Polar and Cylindrical Coordinates

Vectors and Scalars

12.3K Views

article

2.5 : Spherical Coordinates

Vectors and Scalars

8.4K Views

article

2.6 : Vector Algebra: Graphical Method

Vectors and Scalars

9.8K Views

article

2.7 : Vector Algebra: Method of Components

Vectors and Scalars

12.1K Views

article

2.8 : Scalar Product (Dot Product)

Vectors and Scalars

7.3K Views

article

2.9 : Vector Product (Cross Product)

Vectors and Scalars

8.5K Views

article

2.10 : Scalar and Vector Triple Products

Vectors and Scalars

1.8K Views

article

2.12 : Divergence and Curl

Vectors and Scalars

1.3K Views

article

2.13 : Second Derivatives and Laplace Operator

Vectors and Scalars

1.0K Views

article

2.14 : Line, Surface, and Volume Integrals

Vectors and Scalars

1.9K Views

article

2.15 : Divergence and Stokes' Theorems

Vectors and Scalars

1.2K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved