Attenuated total reflectance (ATR) infrared spectroscopy is a powerful analytical technique used to study the composition of materials. It is widely employed in chemistry, materials science, forensic science, and other fields where sample characterization is required. ATR has several advantages over traditional transmission IR spectroscopy, including the requirement of little to no sample preparation and the ability to analyze a wide range of samples.
The ATR process begins by directing a beam of IR radiation onto a diamond or germanium crystal. The high refractive index leads to the total internal reflection of the beam within the ATR crystal. When the beam hits the interface between the high refractive index crystal and the lower refractive index sample, an evanescent wave is generated that extends beyond the surface of the crystal into the sample. As the evanescent wave interacts with the sample, some of the energy from the wave is absorbed. The depth to which this wave penetrates the sample depends on the incident light's wavelength, the incidence angle, and the refractive indices of the crystal and the sample. The absorbed energy corresponds to the vibrational frequencies of the molecules in the sample, creating a unique absorption spectrum. Each molecule has a unique combination of bond vibrations and absorbs IR radiation at unique wavelengths. Comparing the absorption spectrum of the sample to known spectra helps identify the molecular composition of the sample.
From Chapter 13:
Now Playing
Molecular Vibrational Spectroscopy
85 Views
Molecular Vibrational Spectroscopy
743 Views
Molecular Vibrational Spectroscopy
1.2K Views
Molecular Vibrational Spectroscopy
646 Views
Molecular Vibrational Spectroscopy
588 Views
Molecular Vibrational Spectroscopy
549 Views
Molecular Vibrational Spectroscopy
424 Views
Molecular Vibrational Spectroscopy
465 Views
Molecular Vibrational Spectroscopy
701 Views
Molecular Vibrational Spectroscopy
505 Views
Molecular Vibrational Spectroscopy
471 Views
Molecular Vibrational Spectroscopy
474 Views
Molecular Vibrational Spectroscopy
437 Views
Molecular Vibrational Spectroscopy
446 Views
Molecular Vibrational Spectroscopy
486 Views
See More
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved