Sign In

A subscription to JoVE is required to view this content.

Modeling Reactive Oxygen Species-Induced Neuronal Death in Mouse Cerebellar Granule Neurons

-- views • 1:24 min

Transcript

Take a culture of mouse primary cerebellar granule neurons.

Add media containing hydrogen peroxide, a reactive oxygen species or ROS, and incubate briefly.

Hydrogen peroxide diffuses into the cells and is converted into highly reactive free radicals.

These radicals induce lipid peroxidation, compromising the integrity of the cell membrane.

Additionally, the radicals cause oxidative modifications in cellular proteins, impairing their function.

Furthermore, they induce DNA breaks, leading to genomic instability.

The radicals also cause oxidative damage to intracellular organelles, including mitochondria.

In response, the damaged mitochondria release cytochrome c, which binds to the apoptotic protease activating factor-1, triggering apoptosome formation and the conversion of pro-caspase-9 to active caspase-9.

Caspase 9 activates executioner caspases, further cleaving cellular proteins and leading to apoptotic neuronal death.

Replace the media with fresh, hydrogen peroxide-free media to halt the signaling cascade.

article

00:35

Modeling Reactive Oxygen Species-Induced Neuronal Death in Mouse Cerebellar Granule Neurons

Related Videos

11 Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved