JoVE Logo
Faculty Resource Center

Sign In

Multicolor Fluorescence Detection for Droplet Microfluidics Using Optical Fibers

DOI :

10.3791/54010-v

May 5th, 2016

May 5th, 2016

9,872 Views

1Department of Pharmaceutical Chemistry, University of California, San Francisco, 2Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco

Multicolor fluorescence detection in droplet microfluidics typically involves bulky and complex epifluorescence microscope-based detection systems. Here we describe a compact and modular multicolor detection scheme that utilizes an array of optical fibers to temporally encode multicolor data collected by a single photodetector.

-- Views

Related Videos

article

Alginate Microcapsule as a 3D Platform for Propagation and Differentiation of Human Embryonic Stem Cells (hESC) to Different Lineages

article

Microbial Control and Monitoring Strategies for Cleanroom Environments and Cellular Therapies

article

Quantitative Characterization of Liquid Photosensitive Bioink Properties for Continuous Digital Light Processing Based Printing

article

Soybean Hairy Root Transformation for the Analysis of Gene Function

article

In Vitro Selection of Engineered Transcriptional Repressors for Targeted Epigenetic Silencing

article

Author Spotlight: Advances in Evaluating Human Lung Epithelial Cells' Response to Metal-Organic Frameworks

article

Simple Establishment of a Vascularized Osteogenic Bone Marrow Niche Using Pre-Cast Poly(ethylene Glycol) (PEG) Hydrogels in an Imaging Microplate

article

Methods for Electroporation and Transformation Confirmation in Limosilactobacillus reuteri DSM20016

article

Author Spotlight: Advancing Eye Physiology Research via a Multi-Channel Flow Culture for Optimal Tissue Maintenance and Real-Time Assessment

article

Author Spotlight: Advancing Coral Culture — Creating a Semi-Quantitatively Controlled Microenvironment System to Counter Current Limitations

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved