Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Orthotopic engraftment of ovarian cancer cells mixed with human stromal cells provides a mouse model that exhibits rapid, diffuse metastatic behavior that is characteristic of human ovarian cancer. This model also allows for the study of tumor cell and stromal cell interactions, as well as their role in tumor progression and metastasis.

Abstract

Ovarian cancer is characterized by early, diffuse metastasis with 70% of women having metastatic disease at the time of diagnosis. While elegant transgenic mouse models of ovarian cancer exist, these mice are expensive and take a long time to develop tumors. Intraperitoneal injection xenograft models lack human stroma and do not accurately model ovarian cancer metastasis. Even patient derived xenografts (PDX) do not fully recapitulate the human stromal microenvironment as serial PDX passages demonstrate significant loss of human stroma. The ability to easily model human ovarian cancer within a physiologically relevant stromal microenvironment is an unmet need. Here, the protocol presents an orthotopic ovarian cancer mouse model using human ovarian cancer cells combined with patient-derived carcinoma-associated mesenchymal stem cells (CA-MSCs). CA-MSCs are stromal progenitor cells, which drive the formation of the stromal microenvironment and support ovarian cancer growth and metastasis. This model develops early and diffuses metastasis mimicking clinical presentation. In this model, luciferase expressing ovarian cancer cells are mixed in a 1:1 ratio with CA-MSCs and injected into the ovarian bursa of NSG mice. Tumor growth and metastasis are followed serially over time using bioluminescence imaging. The resulting tumors grow aggressively and form abdominal metastases by 14 days post injection. Mice experienced significant decreases in body weight as a marker of systemic illness and increased disease burden. By day 30 post injection, mice met endpoint criteria of >10% body weight loss and necropsy confirmed intra-abdominal metastasis in 100% of mice and 60%-80% lung and parenchymal liver metastasis. Collectively, orthotopic engraftment of ovarian cancer cells and stroma cells generates tumors that closely mimic the early and diffuse metastatic behavior of human ovarian cancer. Furthermore, this model provides a tool to study the role of ovarian cancer cell: stroma cell interactions in metastatic progression.

Introduction

Ovarian cancer is a deadly disease with the 5th highest mortality rate of all cancers in women1. Most women with ovarian cancer are diagnosed at an advanced stage, with metastatic spread present in 70% of patients at the time of diagnosis. Factors such as early metastases and advanced stage at diagnosis contribute to the high mortality rates seen with this disease. Moreover, these unique disease characteristics have posed a challenge for establishing ovarian cancer mouse models, including reproducing rapid disease migration into the peritoneal cavity2,3,

Protocol

Patient samples were obtained in accordance with the protocols approved by the University of Pittsburgh's IRB (PRO17080326). Animal experimental methods were conducted under the protocol approved by the Institutional Animal Care and Use Committee of the University of Pittsburgh.

1. Isolation and validation of patient-derived carcinoma-associated mesenchymal stem cells (CA-MSCs)

NOTE: CA-MSCs are derived from surgically resected human ovarian cancer tissue (this st.......

Representative Results

The described approach closely mimics the supportive microenvironment of ovarian cancer (in particular, high grade serous carcinoma) by co-injection of patient-derived mesenchymal stem cells (CA-MSCs) and ovarian cancer cells into the ovarian bursa. First, CA-MSCs were isolated from primary, surgically resected human high grade serous ovarian cancer involving the omentum (all CA-MSCs used in this experiment were derived from the same patient). After 2 weeks of plating the tissue samples, CA-MSCs were tested to meet the c.......

Discussion

Despite significant clinical and research efforts, minimal headway has been made in the treatment and prevention of ovarian cancer1. While a variety of mouse models have been used to study ovarian cancer progression and metastases, these models have faced significant limitations. In particular, previous mouse models have been unable to fully recapitulate the natural history of ovarian cancer progression, including the hallmark feature of early, diffuse intra-abdominal metastases1.......

Acknowledgements

We would like to thank the Gynecologic Oncology Biospecimen Program-Promark for help with tissue collection. LGC is supported by Tina's Wish Rising Star Grant and The Mary Kay Foundation.

....

Materials

NameCompanyCatalog NumberComments
0.05% trypsin/0.02% EDTASigmaSLCD2568
Anti-human CD105BD Pharmingen560847
Anti-human CD73BD Pharmingen555596
Anti-human CD90BD Pharmingen561443
B27Gibco17504-044
β-FGFGibcoPHG0261
β-mercaptoethanolMP Biomedicals194834
CarprofenHenry Schein11695-6934-1
D-luciferinPerkinElmer122799
DMEDGibco11995-065
EGFGibcoPHG0311
GentamicinGibco15710072
Heat-inactivated FBSGibco16000069
InsulinGibco12585014
Insulin syringeBD Pharmingen324704
In vivo imaging system IVISPerkinElmerIVIS Lumina X5
MatrigelCorning354230
MEBM (mammary epithelial cell basal medium)ATCCPCS-600-030
Mycoplasma test kitABmG238
NSG miceThe Jackson Laboratory5557
OVCAR3ATCCHTB-161
Penicillin/streptomycinGibco15070063
Polyglycolic Acid sutureACE003-2480

References

  1. American Cancer Society. K. S. f. O. C. American Cancer Society. , (2020).
  2. Konecny, G. E., et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. Journal of the Nationa....

Explore More Articles

Ovarian CancerMetastasisOrthotopic Mouse ModelPatient derived Carcinoma associated Mesenchymal Stem CellsCA MSCsStromal MicroenvironmentBioluminescence ImagingIntraperitoneal XenograftPatient derived XenograftPDX

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved