Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Earthworms are a novel invertebrate in vivo bench-top model for vasculature studies. We present techniques and equipment that allow efficient surgery and microinjection into the earthworm vasculature. Surgical protocols, microinjection techniques and the procedure for producing custom-made micropipettes are described.

Abstract

Although vertebrates are indispensable to biomedical research, studies are often limited by factors such as cost, lengthy internal review, and ethical considerations. We present the earthworm as an alternative, low-cost, invertebrate applicable to certain preliminary vasculature studies. Due to the surgical availability of the earthworm's dorsal vessels, ventral vessels, and five pairs of pseudo hearts, earthworms are readily accessible, offer low-cost maintenance, and require administration of only small doses of a given compound. The earthworm model provides a simple closed vascular circulatory system with a hemoglobin structure similar to human blood. A protocol is provided for anaesthetizing the earthworms and performing surgical incisions to expose relevant blood vessels. Micropipettes for compound administration are formed by heating and pulling glass with a pipette puller and using a beveling system to create a micron-scale fine needle tip. The tips are then used with a micropositioner and microinjector to inject arbitrary compounds into the vascular system of an earthworm, repeatably, with the availability of large sample sizes and small compound volumes. Details on the intricacies of injection procedure are provided. The small vessel size of the earthworm is challenging, particularly in the case of the ventral vessel; however, mastery of the techniques presented offers high repeatability as a low-cost solution, making studies of very large sample size practical.

Introduction

The earthworm has been used as an important bioindicator and bioassay for previous scientific applications1,2,3,4,5,6; it is an ideal organism for assessing biological risks from hazardous and toxic waste in terrestrial environments for in situ and bioaccumulation studies, such as biocides (insecticides) in soil and adverse ecotoxicological effects7,8,9,

Protocol

1. Micropipette preparation: pulling glass and beveling tip

  1. Micropipette pulling
    1. Turn on the micropipette puller and select a program to enter specific parameters for earthworm microinjection.
    2. Set parameters to Pressure=500, Pull=75, Time=250, Heat=336, and Velocity=70. Results may vary puller to puller; therefore, experiment with parameters to achieve desired tip (size, sharpness, shape, etc.).
    3. Be sure to conduct a RAMP test to determine the heat value for the micropipettes .......

Representative Results

The following representative results are based on a set of specific parameters that include the settings used to pull the glass pipette, the pipette opening size formed from a given beveling angle, and the pressure and time of the microinjections. In Figure 1, a schematic of the flow is displayed representing the process from start to finish.

Based on the pipette puller parameters selected, the following tip would emerge from the pull (Figure .......

Discussion

While the earthworm is in 10% ethanol, particularly if the earthworm is of older age, there may be unwanted effects for exposure times greater than 30 minutes; the intestines will start to deteriorate, and when the earthworm is surgically opened, its internal intestines spread out. Therefore, it is encouraged to use young to mid-aged earthworms. During the process of cutting through the skin of the earthworm, it is imperative that a full scissor cut is not made, meaning the investigator must cut only halfway and keep pus.......

Acknowledgements

This work was funded by the NSF-FDA Scholar-in-Residence Fellowship (NSF-FDA SIR, #1641221), US Food and Drug Administration Office Chief Scientist Challenge Grant (FDA OCS), National Science Foundation Integrative Graduate Education and Research Traineeship (NSF IGERT, #1144646) and supported by the Office of Science and Engineering Laboratories (OSEL) at the US Food and Drug Administration (FDA).

....

Materials

NameCompanyCatalog NumberComments
3M Vetbond Tissue Adhesive3M Vetbond084-1469SB3mL bottle vet adhesive - liquid band-aide
40x Stereo MicroscopeSutter Instrument Co.BV-10-DNot needed, can add on other scopes
500 Large WormsWindsor Wholesale Bait500 Large
Beveler pedestal oilSutter Instrument Co.008
BladesTed Pella, Inc121-2
Borosilicate Glass with FilamentSutter Instrument Co.BF150-86-10
CameraAmScopeMU500
CameraAmScopeMU1803-CK8MP USB3.0 Microscope Digital Camera
Electrode Impedance MeterSutter Instrument Co.BV-10-C
EthanolSigma AldrichE7023-1LPure ethanol
FilamentSutter Instrument Co.FT315Btrough filament
Grinding PlateSutter Instrument Co.104DFine Plate
Hospital Grade SalineBaxter Healthcare Corporation2F71240.9% Sodium Chloride Irrigation
Joystick MicromanipulatorNarishigeMN-151
KimWipes Kimtech ScienceKimberly-Clark Professional34155
LeafgroLeafGro5892521.5-cu. ft.
Metal Hub NeedleHamilton91024Luer Lock Metal Needle
Micro Vessel ClipsWPI501779-G
MicroinjectorTriTech ResearchMINJ-D
Micropiette Puller Model P-97Sutter Instrument Co.P-97
Micropipette BevelerSutter Instrument Co.BV-10-B
MicroscopeAmScopeSM-8TPW2-144S3.5X-225X Simul-Focal Articulating Microcope
Needle HolderTriTech ResearchMINJ-4
NeverWetRust-OleumNeverWet
Pyrex GlassCorning08747AFisher Manufacturer
Stainless Micro-RulerTed Pella, Inc13635Micro-Ruler mounted on a Handle, 10mm scale, with lines at 0.01mm intervals
Surgical GripsTed Pella, Inc53073Forceps, Hemostat
Surgical scissorsTed Pella, Inc1320Fine Iris Scissors, Straight
U.S.P. Mineral Oil Lubricant LaxativeSwanMineral Oil

References

  1. Stevenson, J. . The Oligochaeta. , 685 (1930).
  2. Reynolds, J. W., Reynolds, W. M. Earthworms in medicine. American Journal of Nursing. 72 (7), 1273 (1972).
  3. Gates, G. E.

Explore More Articles

EarthwormLumbricus TerrestrisMicroinjectionVasculatureInvertebrate ModelBiomedical ResearchLow costVascular Circulatory SystemHemoglobinAnesthesiaSurgical IncisionMicropipetteMicropositionerMicroinjectorSample SizeVessel Size

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved