Sign In

The degree of freedom for a particular statistical calculation is the number of values that are free to vary. Thus, the minimum number of independent numbers can specify a particular statistic. The degrees of freedom differ greatly depending on known and uncalculated statistical components.

For example, suppose there are three unknown numbers whose mean is 10; although we can freely assign values to the first and second numbers, the value of the last number can not be arbitrarily assigned. Since the first two are independent, with the third one dependent, the dataset is said to have two degrees of freedom. In many statistical methods, the number of degrees of freedom is usually calculated as one minus the sample size. The degrees of freedom have broad applications in calculating standard deviation and statistical estimates in methods such as the Student t distribution and the Chi-Square distribution tests.

Tags
Degrees Of FreedomStatistical CalculationIndependent NumbersDependent NumbersSample SizeStandard DeviationStatistical EstimatesStudent T DistributionChi Square DistributionMean

From Chapter 8:

article

Now Playing

8.2 : Degrees of Freedom

Distributions

2.9K Views

article

8.1 : توزيعات تقدير معلمة السكان

Distributions

3.9K Views

article

8.3 : توزيع الطالب

Distributions

5.7K Views

article

8.4 : الاختيار بين توزيع z و t

Distributions

2.7K Views

article

8.5 : توزيع مربع كاي

Distributions

3.4K Views

article

8.6 : إيجاد قيم حرجة لمربع كاي

Distributions

2.8K Views

article

8.7 : تقدير الانحراف المعياري للسكان

Distributions

2.9K Views

article

8.8 : اختبار الملاءمة الجيدة

Distributions

3.2K Views

article

8.9 : الترددات المتوقعة في اختبارات الملاءمة

Distributions

2.5K Views

article

8.10 : جدول الطوارئ

Distributions

2.4K Views

article

8.11 : مقدمة في اختبار الاستقلال

Distributions

2.0K Views

article

8.12 : اختبار الفرضيات لاختبار الاستقلالية

Distributions

3.4K Views

article

8.13 : تحديد التردد المتوقع

Distributions

2.1K Views

article

8.14 : اختبار التجانس

Distributions

1.9K Views

article

8.15 : توزيع F

Distributions

3.6K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved