登录

The degree of freedom for a particular statistical calculation is the number of values that are free to vary. Thus, the minimum number of independent numbers can specify a particular statistic. The degrees of freedom differ greatly depending on known and uncalculated statistical components.

For example, suppose there are three unknown numbers whose mean is 10; although we can freely assign values to the first and second numbers, the value of the last number can not be arbitrarily assigned. Since the first two are independent, with the third one dependent, the dataset is said to have two degrees of freedom. In many statistical methods, the number of degrees of freedom is usually calculated as one minus the sample size. The degrees of freedom have broad applications in calculating standard deviation and statistical estimates in methods such as the Student t distribution and the Chi-Square distribution tests.

Tags
Degrees Of FreedomStatistical CalculationIndependent NumbersDependent NumbersSample SizeStandard DeviationStatistical EstimatesStudent T DistributionChi Square DistributionMean

来自章节 8:

article

Now Playing

8.2 : Degrees of Freedom

Distributions

2.9K Views

article

8.1 : 用于估计总体的分布参数

Distributions

3.9K Views

article

8.3 : 学生 t 分布

Distributions

5.7K Views

article

8.4 : 在 z 分布和 t 分布之间进行选择

Distributions

2.7K Views

article

8.5 : 卡方分布

Distributions

3.4K Views

article

8.6 : 求卡方的临界值

Distributions

2.8K Views

article

8.7 : 估计总体标准差

Distributions

2.9K Views

article

8.8 : 拟合优度检验

Distributions

3.2K Views

article

8.9 : 拟合优度检验中的预期频率

Distributions

2.5K Views

article

8.10 : 列联表

Distributions

2.4K Views

article

8.11 : 独立性测试简介

Distributions

2.0K Views

article

8.12 : 独立性检验的假设检验

Distributions

3.4K Views

article

8.13 : 确定预期频率

Distributions

2.1K Views

article

8.14 : 均匀性检验

Distributions

1.9K Views

article

8.15 : F 分布

Distributions

3.6K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。