로그인

The degree of freedom for a particular statistical calculation is the number of values that are free to vary. Thus, the minimum number of independent numbers can specify a particular statistic. The degrees of freedom differ greatly depending on known and uncalculated statistical components.

For example, suppose there are three unknown numbers whose mean is 10; although we can freely assign values to the first and second numbers, the value of the last number can not be arbitrarily assigned. Since the first two are independent, with the third one dependent, the dataset is said to have two degrees of freedom. In many statistical methods, the number of degrees of freedom is usually calculated as one minus the sample size. The degrees of freedom have broad applications in calculating standard deviation and statistical estimates in methods such as the Student t distribution and the Chi-Square distribution tests.

Tags
Degrees Of FreedomStatistical CalculationIndependent NumbersDependent NumbersSample SizeStandard DeviationStatistical EstimatesStudent T DistributionChi Square DistributionMean

장에서 8:

article

Now Playing

8.2 : Degrees of Freedom

Distributions

2.9K Views

article

8.1 : 모집단 모수를 추정하기 위한 분포

Distributions

3.9K Views

article

8.3 : 스튜던트 t 분포

Distributions

5.7K Views

article

8.4 : z 분포와 t 분포 중에서 선택

Distributions

2.7K Views

article

8.5 : 카이제곱 분포

Distributions

3.4K Views

article

8.6 : Chi-square에 대한 임계값 찾기

Distributions

2.8K Views

article

8.7 : 모집단 표준 편차 추정

Distributions

2.9K Views

article

8.8 : 적합도 테스트

Distributions

3.2K Views

article

8.9 : 적합도 검정에서 예상되는 빈도

Distributions

2.5K Views

article

8.10 : 분할표

Distributions

2.4K Views

article

8.11 : 독립성 시험 소개

Distributions

2.0K Views

article

8.12 : 독립성 검정을 위한 가설 검정

Distributions

3.4K Views

article

8.13 : 예상 빈도 결정

Distributions

2.1K Views

article

8.14 : 균질성 테스트

Distributions

1.9K Views

article

8.15 : F 분포

Distributions

3.6K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유