Research
Education
Solutions
Sign In
EN
EN - English
CN - 中文
DE - Deutsch
ES - Español
KR - 한국어
IT - Italiano
FR - Français
PT - Português
TR - Türkçe
JA - 日本語
PL - Polski
RU - Русский
Wyss Institute for Biologically Inspired Engineering
Richard Novak has not added Biography.
If you are Richard Novak and would like to personalize this page please email our Author Liaison for assistance.
Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip.
Nature biomedical engineering , 2017 | Pubmed ID: 29038743
Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips.
Annual review of pharmacology and toxicology Jan, 2018 | Pubmed ID: 29309256
Rapid Prototyping of Thermoplastic Microfluidic Devices.
Methods in molecular biology (Clifton, N.J.) , 2018 | Pubmed ID: 29633212
Harvard University
Richard Novak*,1,
Meredyth Didier*,1,2,
Elizabeth Calamari1,
Carlos F Ng1,
Youngjae Choe1,
Susan L Clauson1,
Bret A Nestor1,
Jefferson Puerta1,
Rachel Fleming1,
Sasan J Firoozinezhad1,
Donald E Ingber1,3,4
1Wyss Institute for Biologically Inspired Engineering, Harvard University,
2, Apple, Inc,
3Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University,
4Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School
Privacy
Terms of Use
Policies
Contact Us
Recommend to library
JoVE NEWSLETTERS
JoVE Journal
Methods Collections
JoVE Encyclopedia of Experiments
Archive
JoVE Core
JoVE Business
JoVE Science Education
JoVE Lab Manual
Faculty Resource Center
Authors
Librarians
Access
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved