This paper illustrates an innovative visual approach (photovoice or photo-elicitation) to achieve fair process in clinical care for patients living with chronic health conditions, illuminate gaps in clinical knowledge, forge better therapeutic relationships, and identify patient-centered goals and possibilities for healing.
We describe a Flippase-induced intersectional Gal80/Gal4 repression (FINGR) method, allowing tissue-specific FLP to determine Gal80 expression patterns. Wherever Gal4 and FLP overlap, Gal4 expression is turned on (Gal80 flipped out) or off (Gal80 flipped in). The FINGR method is versatile for clonal analysis and neural circuit mapping.
The Tandem Affinity Purification (TAP) method has been used extensively to isolate native complexes from cellular extract, primarily eukaryotic, for proteomics. Here, we present a TAP method protocol optimized for purification of native complexes for structural studies.
Physical models of biomolecules can facilitate an understanding of their structure-function for the researcher, aid in communication between researchers, and serve as an educational tool in pedagogical endeavors. Here, we provide detailed guidance for the 3D printing of accurate models of biomolecules using fused filament fabrication desktop 3D printers.
Here, we present a protocol to image human pancreas sections in three dimensions (3D) using optimized passive clearing methods. This manuscript demonstrates these procedures for passive optical clearing followed by multiple immunofluorescence staining to identify key elements of the autonomic and sensory neural networks innervating human islets.
The goal of this protocol is to use temperature to control the flow speeds of three-dimensional active fluids. The advantage of this method not only allows for regulating flow speeds in situ but also enables dynamic control, such as periodically tuning flow speeds up and down.
This protocol describes a procedure for constructing carbon fiber microelectrode arrays for chronic and acute in vivo electrophysiological recordings in mouse (Mus musculus) and ferret (Mustela putorius furo) from multiple brain regions. Each step, following the purchase of raw carbon fibers to microelectrode array implantation, is described in detail, with emphasis on microelectrode array construction.
The ACT1-CUP1 assay, a copper growth assay, provides a quick readout of precursor messenger RNA (pre-mRNA) splicing and the impact mutant splicing factors have on spliceosomal function. This study provides a protocol and highlights the customization possible to address the splicing question of interest.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。